Return to search

Numerical modelling of thin elastic solids in contact / Modélisation numérique de solides élastiques minces en contact

Cette thèse porte sur la modélisation numérique des structures élastiques minces en contact. De nombreux objets autour de nous, naturels ou artificiels, sont des objets minces et déformables. Les objets filiformes tels que les câbles industriels, les pales d'hélicoptères, les tiges des plantes et les cheveux peuvent être modélisés comme des tiges élastiques minces. Alors que les objets surfaciques tels que le papier, les voiles de bateaux, les feuilles et les vêtements peuvent être modélisés comme des coques élastiques minces. L'étude numérique de la réponse mécanique de ces structures est de la plus grande importance dans de nombreuses applications de l'ingénierie, de la biomécanique, de l'infographie et de bien d'autres domaines. Dans cette thèse, nous traitons les tiges et les coques comme des systèmes multi-corps en dimension finie.Lorsqu'un système multi-corps est soumis à des contraintes de contact frottant, un problème se pose souvent. Dans certaines configurations, il est à craindre qu'il n'existe aucune force de contact et aucune accelération qui puisse empêcher le système de violer ses contraintes. Ce phénomène est connu sous le nom de Paradoxe de Painlevé. Dans la première partie de ce manuscrit, nous analysons le problème de contact (dont les inconnues sont les accélérations et les forces de contact) et nous obtenons des bornes supérieures calculables sur les coefficients de frottement à chaque contact, de sorte que si elles sont vérifiées, le problème de contact est bien posé et les paradoxes de Painlevé sont évités.Certaines structures filiformes peuvent facilement se courber et se tordre, alors qu'elles peuvent difficilement s'étirer ou cisailler. De telles structures peuvent être modélisées comme des tiges de Kirchhoff. Dans la deuxième partie de ce manuscrit, nous considérons le problème du calcul des équilibres statiques stables des tiges de Kirchhoff soumises à des conditions de bord différentes et à des contraintes de contact sans frottement. Nous formulons le problème comme un problème de Commande Optimale, où les courbures de la tige sont interprétées comme des commandes et la position et l'orientation de la tige sont interprétées comme des variables d'état. L'utilisation de méthodes directes pour la Commande Optimale numérique nous conduit alors à la proposition de nouveaux schémas de discrétisation spatiale pour les tiges de Kirchhoff. Les schémas proposés sont soit du type intrinsèque, où les principaux degrés de liberté sont les courbures de la tige, soit du type mixte, où les principaux degrés de liberté sont à la fois les courbures et les déplacements généralisés.Similairement aux tiges de Kirchhoff, certaines structures surfaciques telles que le papier peuvent difficilement s'allonger ou cisailler. L'un des avantages de l'approche intrinsèque pour les tiges de Kirchhoff est que les contraintes de non élongation et de non cisaillement de la tige sont traitées intrinsèquement, sans faire appel à des forces de répulsion trop raides ou à d'autres contraintes algébriques sur les degrés de liberté. Dans la troisième partie de cette thèse, nous proposons une extension de cette approche pour modéliser la dynamique des coques inextensibles et sans cisaillement. Nous limitons notre étude au cas d'un élément de coque avec une surface moyenne développable. Nous utilisons comme degrés de liberté les composantes de la seconde forme fondamentale de la surface moyenne de la coque. Cela conduit également à une gestion intrinsèque des contraintes de non extension et de non cisaillement de la coque. / This dissertation focuses on the numerical modelling of thin elastic structures in contact. Many objects around us, either natural or man-made, are slender deformable objects. Curve-like objects such as industrial cables, helicopter blades, plant stems and hair can be modelled as thin elastic rods. While surface-like objects such as paper, boat sails, leaves and clothes can be modelled as thin elastic shells. The numerical study of the mechanical response of such structures is important in many applications of engineering, bio-mechanics, computer graphics and other fields. In this dissertation we treat rods and shells as finite dimensional multibody systems.When a multibody system is subject to frictional contact constraints, a problem often arises. In some configurations there may exist no contact force which can prevent the system from violating its contact constraints. This is known as the Painlev'e paradox. In the first part of this manuscript we analyze the contact problem (whose unknowns are the accelerations and the contact forces) and we derive computable upper bounds on the friction coefficients at each contact, such that if verified, the contact problem is well-posed and Painlev'e paradoxes are avoided.Some rod-like structures may easily bend and twist but hardly stretch and shear, such structures can be modelled as Kirchhoff rods. In the second part of this manuscript we consider the problem of computing the stable static equilibria of Kirchhoff rods subject to different boundary conditions and frictionless contact constraints. We formulate the problem as an Optimal Control Problem, where the strains of the rod are interpreted as control variables and the position and orientation of the rod are interpreted as state variables. Employing direct methods of numerical Optimal Control then leads us to the proposal of new spatial discretization schemes for Kirchhoff rods. The proposed schemes are either of the strain-based type, where the main degrees of freedom are the strains of the rod, or of the mixed type, where the main degrees of freedom are both the strains and the generalized displacements.Very much like for Kirchhoff rods, thin surface-like structures such as paper can hardly stretch or shear at all. One of the advantages of the strain based approach is that the no extension and no shear constraints of the Kirchhoff rod are handled intrinsically, without the need of stiff repulsion forces, or of further algebraic constraints on the degrees of freedom. In the third part of this dissertation we propose an extension of this approach to model the dynamics of inextensible and unshearable shells. We restrict our study to the case of a shell patch with a developable mid-surface. We use as primary degrees of freedom the components of the second fundamental form of the shell's mid-surface. This also leads to an intrinsic handling of the no shear and no extension constraints of the shell.

Identiferoai:union.ndltd.org:theses.fr/2017GREAM031
Date03 July 2017
CreatorsBlumentals, Alejandro
ContributorsGrenoble Alpes, Brogliato, Bernard, Bertails, Florence
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds