River sediment is one of the most pervasive pollutants in the world. Excess amounts of fine sediment can reduce water quality, damage stream ecosystems, and harm aquatic life. Both natural and human-caused processes can add sediment to a river, such as tectonic uplift, landslides, and timber harvesting. Therefore, it is important to understand how fine sediment enters and moves through a rive system to inform policymakers and land-managers on effective ecosystem management.
In this study, we determined how the relationship between river flow and suspended sediment changed among watersheds along the North Coast of California. We found a rise in suspended sediment concentration at median flows following extreme timber harvesting. Additionally, our results indicate that river flow and suspended sediment relationships are influenced by timber harvest activity, tectonic uplift, rainfall patterns, and near-channel environments.
These results support previous findings that extreme land disturbance in a watershed, be it natural or human-caused, can change river flow and suspended sediment relationships. Our results suggest that policymakers and land-managers should take into account tectonic uplift when making regulation and should prioritize protecting near-channel environments.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8789 |
Date | 01 December 2019 |
Creators | Fisher, Adam Caspian Nebraska |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.002 seconds