• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power V. Threhsold: Near-Channel Morphology Controls Sediment Rating Curve Shape in Coastal Redwood Watersheds

Fisher, Adam Caspian Nebraska 01 December 2019 (has links)
River sediment is one of the most pervasive pollutants in the world. Excess amounts of fine sediment can reduce water quality, damage stream ecosystems, and harm aquatic life. Both natural and human-caused processes can add sediment to a river, such as tectonic uplift, landslides, and timber harvesting. Therefore, it is important to understand how fine sediment enters and moves through a rive system to inform policymakers and land-managers on effective ecosystem management. In this study, we determined how the relationship between river flow and suspended sediment changed among watersheds along the North Coast of California. We found a rise in suspended sediment concentration at median flows following extreme timber harvesting. Additionally, our results indicate that river flow and suspended sediment relationships are influenced by timber harvest activity, tectonic uplift, rainfall patterns, and near-channel environments. These results support previous findings that extreme land disturbance in a watershed, be it natural or human-caused, can change river flow and suspended sediment relationships. Our results suggest that policymakers and land-managers should take into account tectonic uplift when making regulation and should prioritize protecting near-channel environments.
2

Análisis de la producción de sedimentos en diferentes escalas de tiempo en una subcuenca semiárida, Moquegua - Perú / Analysis of semiarid catchment sediment yield employing different data time intervals, Moquegua - Peru

Requena Sánchez, Norvin Plumieer 10 October 2014 (has links)
Usualmente la producción de sedimentos en suspensión (Qss) de un río es calculada utilizando datos de caudales medios diarios o mensuales. Considerando que la mayor Qss ocurre durante los eventos de lluvias y también que los caudales medios no son capaces de representar adecuadamente los máximos caudales, principalmente en zonas de alta variabilidad climática, la forma usual de cálculo de Qss puede subestimar esta producción. En este sentido, esta investigación buscó analizar la influencia de la variabilidad temporal de los datos de caudales en el cálculo de la producción de sedimentos. Adicionalmente fue analizada el uso de diferentes tipos de curvas de sedimentos: (i) para todo el periodo de estudio, (ii) por años hidrológicos y (iii) asociación por épocas características (húmedas, semi-húmedas y secas). El estudio fue realizado en la subcuenca del río Torata, ubicada en una zona semiárida al sur del Perú, entre 2100 y 5200 m de altitud con pendiente promedio de 21.0% y alta variabilidad climática, en especial la precipitación que se ve reflejado en los caudales, ya que en un lapso de horas puede variar de 4 a 34 m3/s. El error entre la descarga prevista y estimada para el periodo de estudio (2001-2012) utilizando los diferentes tipos de curvas fue (i) -65.85%, (ii) -15.36% y (iii) -8.74%, presentando mejora en el coeficiente de eficiencia de Nash-Sutcliffe de 0.248 para 0.500. Los resultados mostraron que la diferencia entre la descarga de sedimentos en suspensión total para el periodo calculado con caudales medias mensuales y diarias fue de -92% y -62%, ambos en comparación de producción para valores medios horarios. También fue constatado que el 99.7% de la producción de sedimentos ocurre en temporada de lluvias, inclusive, un único evento de lluvia llegó a producir 80% de la producción anual. Los resultados de esta investigación ponen en manifiesto la importancia de utilizar registros de caudales con escalas pequeñas de tiempo (minutos, horas), que puedan representar la alta variabilidad de los caudales característicos de zonas semiáridas. / The usual methods that calculate the suspended sediment flux (Qss) of rivers employ discharge mean values daily or monthly. As most of the sediments are transported during overflow events and a mean value smooths the flood peak discharge, mainly in high climatic variability areas, the usual method to evaluate the Qss might underestimate the production of river sediments. This paper reports on an analysis of the gauge influence of temporal variability on the sediment yield estimation. Additionally, the use of different types of sediment rate curves was analyzed for (i) the whole time-series data, (ii) per hydrological year, and (iii) per hydrological pattern characterization (flood, intermediary and drought). A study case was conducted in the Torata river sub-catchment, a Peruvian semi-arid area located between altitudes of 2100 and 5200 meters and whose average slope is 21%. The high climatic variability is expressed by the huge river flow amplitude, which ranges from 4 to 34 m3/s in a few hours. The errors for the sediment yield from 2001 to 2012 estimated by the different sediment rating curves were (i) -65,85%, (ii) -15,36% and (iii) -8,74%, with a 0,248 to 0,500 Nash-Sutcliffe efficiency coefficient improvement. The differences between the sediment yield in total suspension for the period calculated monthly and daily were -92% y and -62%, respectively, in comparison with the production for hourly average values. Results show that 99,7% of the sediment are produced during the flood season and a single overflow event could represent 80% of the annual sediment discharge flow. This research highlights the importance of collecting and using discharge data of a short time interval (minutes or hours) to compute and represent the overflow peaks typical of semiarid regions.
3

How the Choice of Bed Material Load Equations and Flow Duration Curves Impacts Estimates of Effective Discharge

Cope, Michael James 01 June 2017 (has links)
The purpose of this study is to analyze how estimates of an important geomorphic parameter, effective discharge, are impacted by the choice of bed material load equations and flow duration curves (FDCs). The Yang (1979), Brownlie (1981), and Pagosa equations developed by Rosgen (2006) were compared for predicting bed material load. To calculate the bed material load using the Pagosa equations, the bedload and suspended load are calculated separately and the results are added together. To compare the effectiveness of the equations, measured bed material load data from the USGS Open-File Report 89-67 were used. Following the calculations, the equation results were compared to the measured data. It was determined that the Pagosa equations performed the best overall, followed by Brownlie and then Yang. The superior performance of the Pagosa equations is likely due to the equations being calibrated. USGS regression equations for FDCs were compared to a method developed by Dr. David Rosgen in which a dimensionless FDC (DFDC) is developed. Weminuche Creek in southwestern Colorado was used as the study site. Rosgen's DFDC method requires the selection of a streamgage for a stream that exhibits the same hydro-physiographic characteristics as the site of interest. An FDC is developed for the gaged site and made dimensionless by dividing the discharges by the bankfull discharge of the gaged site. The DFDC is then made dimensional by multiplying by the bankfull discharge of the site of interest and the resulting dimensional FDC is taken as the FDC of the ungaged site. The USGS regression equations underpredicted the discharges while Rosgen's DFDC method overpredicted them. Rosgen's DFDC method produced more accurate results than the USGS regression equations for Weminuche Creek. To calculate the effective discharge, the FDC was used to develop a flow frequency curve which was then multiplied by the sediment rating curve. Effective discharge calculations were performed for Weminuche Creek using several combinations of bed material load prediction equations and FDCs. The USGS regression equations, Rosgen's DFDC method, and streamgage data were all used in conjunction with the Yang and Pagosa equations. The Brownlie equation predicted zero bed material load for Weminuche Creek, and was thus not used to calculate the effective discharge. When the USGS regression equations were used with the Yang and Pagosa equations, the calculated effective discharge was approximately 4.5 cms for both bed material load prediction equations. When Rosgen's DFDC method and streamgage data were used with the Yang and Pagosa equations, the effective discharge was approximately 13.5 cms. From these results, it was determined that the bed material load prediction equations had little impact on the effective discharge for Weminuche Creek while the FDCs did influence the results.
4

Análisis de la producción de sedimentos en diferentes escalas de tiempo en una subcuenca semiárida, Moquegua - Perú / Analysis of semiarid catchment sediment yield employing different data time intervals, Moquegua - Peru

Norvin Plumieer Requena Sánchez 10 October 2014 (has links)
Usualmente la producción de sedimentos en suspensión (Qss) de un río es calculada utilizando datos de caudales medios diarios o mensuales. Considerando que la mayor Qss ocurre durante los eventos de lluvias y también que los caudales medios no son capaces de representar adecuadamente los máximos caudales, principalmente en zonas de alta variabilidad climática, la forma usual de cálculo de Qss puede subestimar esta producción. En este sentido, esta investigación buscó analizar la influencia de la variabilidad temporal de los datos de caudales en el cálculo de la producción de sedimentos. Adicionalmente fue analizada el uso de diferentes tipos de curvas de sedimentos: (i) para todo el periodo de estudio, (ii) por años hidrológicos y (iii) asociación por épocas características (húmedas, semi-húmedas y secas). El estudio fue realizado en la subcuenca del río Torata, ubicada en una zona semiárida al sur del Perú, entre 2100 y 5200 m de altitud con pendiente promedio de 21.0% y alta variabilidad climática, en especial la precipitación que se ve reflejado en los caudales, ya que en un lapso de horas puede variar de 4 a 34 m3/s. El error entre la descarga prevista y estimada para el periodo de estudio (2001-2012) utilizando los diferentes tipos de curvas fue (i) -65.85%, (ii) -15.36% y (iii) -8.74%, presentando mejora en el coeficiente de eficiencia de Nash-Sutcliffe de 0.248 para 0.500. Los resultados mostraron que la diferencia entre la descarga de sedimentos en suspensión total para el periodo calculado con caudales medias mensuales y diarias fue de -92% y -62%, ambos en comparación de producción para valores medios horarios. También fue constatado que el 99.7% de la producción de sedimentos ocurre en temporada de lluvias, inclusive, un único evento de lluvia llegó a producir 80% de la producción anual. Los resultados de esta investigación ponen en manifiesto la importancia de utilizar registros de caudales con escalas pequeñas de tiempo (minutos, horas), que puedan representar la alta variabilidad de los caudales característicos de zonas semiáridas. / The usual methods that calculate the suspended sediment flux (Qss) of rivers employ discharge mean values daily or monthly. As most of the sediments are transported during overflow events and a mean value smooths the flood peak discharge, mainly in high climatic variability areas, the usual method to evaluate the Qss might underestimate the production of river sediments. This paper reports on an analysis of the gauge influence of temporal variability on the sediment yield estimation. Additionally, the use of different types of sediment rate curves was analyzed for (i) the whole time-series data, (ii) per hydrological year, and (iii) per hydrological pattern characterization (flood, intermediary and drought). A study case was conducted in the Torata river sub-catchment, a Peruvian semi-arid area located between altitudes of 2100 and 5200 meters and whose average slope is 21%. The high climatic variability is expressed by the huge river flow amplitude, which ranges from 4 to 34 m3/s in a few hours. The errors for the sediment yield from 2001 to 2012 estimated by the different sediment rating curves were (i) -65,85%, (ii) -15,36% and (iii) -8,74%, with a 0,248 to 0,500 Nash-Sutcliffe efficiency coefficient improvement. The differences between the sediment yield in total suspension for the period calculated monthly and daily were -92% y and -62%, respectively, in comparison with the production for hourly average values. Results show that 99,7% of the sediment are produced during the flood season and a single overflow event could represent 80% of the annual sediment discharge flow. This research highlights the importance of collecting and using discharge data of a short time interval (minutes or hours) to compute and represent the overflow peaks typical of semiarid regions.

Page generated in 0.1258 seconds