• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How the Choice of Bed Material Load Equations and Flow Duration Curves Impacts Estimates of Effective Discharge

Cope, Michael James 01 June 2017 (has links)
The purpose of this study is to analyze how estimates of an important geomorphic parameter, effective discharge, are impacted by the choice of bed material load equations and flow duration curves (FDCs). The Yang (1979), Brownlie (1981), and Pagosa equations developed by Rosgen (2006) were compared for predicting bed material load. To calculate the bed material load using the Pagosa equations, the bedload and suspended load are calculated separately and the results are added together. To compare the effectiveness of the equations, measured bed material load data from the USGS Open-File Report 89-67 were used. Following the calculations, the equation results were compared to the measured data. It was determined that the Pagosa equations performed the best overall, followed by Brownlie and then Yang. The superior performance of the Pagosa equations is likely due to the equations being calibrated. USGS regression equations for FDCs were compared to a method developed by Dr. David Rosgen in which a dimensionless FDC (DFDC) is developed. Weminuche Creek in southwestern Colorado was used as the study site. Rosgen's DFDC method requires the selection of a streamgage for a stream that exhibits the same hydro-physiographic characteristics as the site of interest. An FDC is developed for the gaged site and made dimensionless by dividing the discharges by the bankfull discharge of the gaged site. The DFDC is then made dimensional by multiplying by the bankfull discharge of the site of interest and the resulting dimensional FDC is taken as the FDC of the ungaged site. The USGS regression equations underpredicted the discharges while Rosgen's DFDC method overpredicted them. Rosgen's DFDC method produced more accurate results than the USGS regression equations for Weminuche Creek. To calculate the effective discharge, the FDC was used to develop a flow frequency curve which was then multiplied by the sediment rating curve. Effective discharge calculations were performed for Weminuche Creek using several combinations of bed material load prediction equations and FDCs. The USGS regression equations, Rosgen's DFDC method, and streamgage data were all used in conjunction with the Yang and Pagosa equations. The Brownlie equation predicted zero bed material load for Weminuche Creek, and was thus not used to calculate the effective discharge. When the USGS regression equations were used with the Yang and Pagosa equations, the calculated effective discharge was approximately 4.5 cms for both bed material load prediction equations. When Rosgen's DFDC method and streamgage data were used with the Yang and Pagosa equations, the effective discharge was approximately 13.5 cms. From these results, it was determined that the bed material load prediction equations had little impact on the effective discharge for Weminuche Creek while the FDCs did influence the results.
2

Analysis of the Sediment Transport Capabilities of FESWMS FST2DH

Ipson, Mark K. 19 August 2006 (has links) (PDF)
Many numeric models simulate the transport of sediment within rivers and streams. Engineers use such models to monitor the overall condition of a river or stream and to analyze the impact that the aggradation and degradation of sediment has on the stability of bridge piers and other features within a stretch of a river or stream. A model developed by the Federal Highway Administration, FST2DH, was recently modified to include the simulation of sediment movement within a channel. The tools for modeling sediment movement with FST2DH remain unproven. This thesis examines the sediment capabilities of FST2DH. It evaluates the sediment results for reasonableness and compares the results to those obtained from a sediment transport model developed by the Army Corps of Engineers, SED2D WES. Resulting concentrations from another program created by the Army Corps of Engineers, SAMwin, provide additional data comparison for FST2DH sediment solutions. Several test cases for laboratory flumes give additional insight into the model's functionality. Finally, this thesis suggests further enhancements for the sediment capabilities of the FST2DH model and provides direction for future research of the sediment transport capabilities of FST2DH. Results show that FST2DH appropriately models sediment movement in channels with clear-water and equilibrium transport rate inflow conditions. Transport formulas found to be functional include the Engelund—Hansen, Yang sand and gravel, and Meyer-Peter—Mueller equations. FST2DH has difficulty modeling channels with user-specified inflow concentrations or transport rates, models with very small particles, models containing hydraulic jumps, and models with small elements. The test cases that successfully run to completion provide appropriate patterns of scour and deposition. Other trends in the results further verify the functionality of many of the sediment transport options in FST2DH.

Page generated in 0.0944 seconds