La théorie statistique univariée des valeurs extrêmes se généralise au cas multivarié mais l'absence d'un cadre paramétrique naturel complique l'inférence de la loi jointe des extrêmes. Les marges d'erreur associées aux estimateurs non paramétriques de la structure de dépendance sont difficilement accessibles à partir de la dimension trois. Cependant, quantifier l'incertitude est d'autant plus important pour les applications que le problème de la rareté des données extrêmes est récurrent, en particulier en hydrologie. L'objet de cette thèse est de développer des modèles de dépendance entre extrêmes, dans un cadre bayésien permettant de représenter l'incertitude. Après une introduction à la théorie des valeurs extrêmes et à l'inférence bayésienne (chapitre 1), le chapitre 2 explore les propriétés des modèles obtenus en combinant des modèles paramétriques existants, par mélange bayésien (Bayesian Model Averaging). Un modèle semi-paramétrique de mélange de Dirichlet est étudié au chapitre suivant : une nouvelle paramétrisation est introduite afin de s'affranchir d'une contrainte de moments caractéristique de la structure de dépendance et de faciliter l'échantillonnage de la loi a posteriori. Le chapitre~\ref{censorDiri} est motivé par une application hydrologique: il s'agit d'estimer la structure de dépendance spatiale des crues extrêmes dans la région cévenole des Gardons en utilisant des données historiques enregistrées en quatre points. Les données anciennes augmentent la taille de l'échantillon mais beaucoup de ces données sont censurées. Une méthode d'augmentation de données est introduite, dans le cadre du mélange de Dirichlet, palliant l'absence d'expression explicite de la vraisemblance censurée. Les perspectives sont discutées au chapitre 5.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00880873 |
Date | 24 September 2013 |
Creators | Anne, Sabourin |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds