Flood forecasting describes the rainfall-runoff transformation using simplified representations. These representations are based on either empirical descriptions, or on equations of classical mechanics of the involved physical processes. The performances of the existing flood predictions are affected by several sources of uncertainties coming not only from the approximations involved but also from imperfect knowledge of input data, initial conditions of the river basin, and model parameters. Quantifying these uncertainties enables the decision maker to better interpret the predictions and constitute a valuable decision-making tool for flood risk management. Uncertainty analysis on existing rainfall-runoff models are often performed using Monte Carlo (MC)- simulations. The implementation of this type of techniques requires a large number of simulations and consequently a potentially important calculation time. Therefore, quantifying uncertainties of real-time hydrological models is challenging. In this project, we develop a methodology for flood prediction based on Bayesian networks (BNs). BNs are directed acyclic graphs where the nodes correspond to the variables characterizing the modelled system and the arcs represent the probabilistic dependencies between these variables. The presented methodology suggests to build the RBs from the main hydrological factors controlling the flood generation, using both the available observations of the system response and the deterministic equations describing the processes involved. It is, thus, designed to take into account the time variability of different involved variables. The conditional probability tables (parameters), can be specified using observed data, existing hydrological models or expert opinion. Thanks to their inference algorithms, BN are able to rapidly propagate, through the graph, different sources of uncertainty in order to estimate their effect on the model output (e.g. riverflow). Several case studies are tested. The first case study is the Salat river basin, located in the south-west of France, where a BN is used to simulate the discharge at a given station from the streamflow observations at 3 hydrometric stations located upstream. The model showed good performances estimating the discharge at the outlet. Used in a reverse way, the model showed also satisfactory results when characterising the discharges at an upstream station by propagating back discharge observations of some downstream stations. The second case study is the Sagelva basin, located in Norway, where a BN is used to simulate the accumulation of snow water equivalent (SWE) given available weather data observations. The performances of the model are affected by the learning dataset used to train the BN parameters. In the absence of relevant observation data for learning, a methodology for learning the BN-parameters from deterministic models is proposed and tested. The resulted BN can be used to perform uncertainty analysis without any MC-simulations to be performed in real-time. From these case studies, it appears that BNs are a relevant decisionsupport tool for flood risk management.
Identifer | oai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:24348 |
Date | 14 December 2018 |
Creators | Boutkhamouine, Brahim |
Contributors | Institut National Polytechnique de Toulouse - INPT (FRANCE) |
Source Sets | Université de Toulouse |
Language | English |
Detected Language | English |
Type | Thesis, NonPeerReviewed |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://oatao.univ-toulouse.fr/24348/ |
Page generated in 0.0023 seconds