Esta tese promove uma integração entre Finanças e Teoria de Informação para criação de um ambiente alternativo para a determinação do preço racional da opção européia simples ordinária sobre ação e ativo de renda fixa (bond). Uma das características deste novo ambiente de determinação de preço racional é poder continuar utilizando o cálculo newtoniano em vez do estocástico. Cria uma notação matemática precisa e completa para a Teoria da Informação e a integra com a teoria de Finanças em condições de incerteza. Integra as abordagens entrópicas de determinação do preço racional da opção européia simples ordinária de Gulko (1998 e 1998a) e de Yang (1997). Define precisamente o mundo com preço da incerteza neutralizado (risk-neutral world), o mundo martingale, o mundo informacionalmente eficiente e o mundo entrópico e suas implicações para a Ciência do Investimento e, mais especificamente, para a determinação do preço racional de ativos básicos e derivativos. Demonstra detalhadamente a fórmula do preço racional da opção européia simples ordinária de Black-Scholes-Merton, melhorando a notação matemática, simplificando (eliminando a abordagem martingale) e complementando a demonstração feita por Baxter & Rennie (1998). Interrompe uma sucessão de trabalhos que estabelecem uma forma equivocada de calcular o preço da opção européia simples ordinária. Esse erro teve sua origem, muito provavelmente, numa edição de Brealey & Myers, que equivocadamente utilizou um resultado de Cox & Rubinstein (1985); esse resultado facilitava o cálculo do preço racional da opção européia simples ordinária por meio de uma tabela que evita o uso direto da fórmula de Black-Scholes-Merton. Brealey & Myers (desde a quarta edição de 1991), Luehrman (nos seus dois artigos da HBR de 1998 e um caso de 1995 pela HBS) e Edleson (caso publicado em 1994 pela HBS) ensinam que o valor percentual encontrado nessa tabela deve ser multiplicado pelo preço do valor mobiliário, quando deveria ser multiplicado pelo valor presente do preço de exercício. Os resultados mais importantes desta tese para Finanças são: (i) desenvolvimento de um método alternativo, robusto e parcimonioso, baseado no princípio da máxima entropia da Teoria da Informação e do Sistema de Distribuições de Pearson para obtenção de uma única medida de probabilidade neutralizadora do preço da incerteza (risk-neutral probability), (ii) obtenção de fórmula prática para a determinação do preço racional da opção européia simples ordinária para ação, (iii) validação da fórmula de Black-Scholes-Merton para ação, (iv) obtenção de uma fórmula adequada para a determinação do preço racional da opção européia simples ordinária sobre um título de renda fixa (bond), (v) estimação da volatilidade implícita entrópica do preço do valor mobiliário e (vi) definição e estimação do valor em risco (value at risk) entrópico. Há ainda dois resultados importantes para a Teoria da Informação e Economia: (i) distinção mais precisa entre incerteza e risco e (ii) desenvolvimento da medida de ganho informacional da previsão aprimorando o resultado de Theil (1967) e Benish (1999) pela utilização do conceito de divergência de Kullback-Leibler. / This thesis integrates Finance and Information Theory in order to create an alternative environment to the calculation of the rational price of the simple ordinary European option over stocks and bonds. One of the features of this new environment is to allow us to continue using the Newtonian calculus instead of the stochastic one. It creates a precise and complete mathematical notation for the Information Theory and integrates it with the Finance Theory under uncertainty conditions. It integrates Gulkos (1998 and 1998a) and Yangs (1997) entropic approaches to the calculation of the rational price of the simple ordinary European option. It precisely defines the uncertainty-price-neutral world (risk-neutral world), the martingale world, the informationally efficient world and the entropic world and their implications to the Investment Science and, more specifically, to the calculation of the rational price of ordinary assets and derivatives. It demonstrates with details the Black-Scholes-Merton formula of the rational price of the simple ordinary European option, improves the mathematical notation, simplifies it (by eliminating the martingale approach) and completes the demonstration done by Baxter & Rennie (1998). It breaks a succession of works that established a mistaken way to calculate the price of the simple ordinary European option. This mistake had its origin, much probably, in an edition of Brealey & Myers, who erroneously used a result from Cox & Rubinstein (1985). This result facilitates the calculation of the rational price of the simple ordinary European option by using a table that avoids the direct usage of the Black-Scholes-Merton formula. Brealey & Myers (since the 1991 fourth edition), Luehrman (in his two 1998 articles in HBR and in a 1995 case in HBS) and Edleson (1994 case published in HBS) teach that the percentage value found in this table must be multiplied by the price of the asset, when in reality it should have been multiplied by the present value of the strike price. The most important results of this thesis for Finance are: (i) development of a robust and economic alternative method, based on the maximum-entropy principle of the Information Theory and on Pearsons Distribution System, to the calculation of a unique uncertainty-price-neutral probability measure (risk-neutral probability), (ii) achievement of a practical formula to the calculation of the rational price of the simple ordinary European option on stocks, (iii) validation of the Black-Scholes-Merton formula on stocks, (iv) achievement of an adequate formula to the calculation of the rational price of the simple ordinary European option on bonds, (v) estimation of the implied entropic volatility of the price of an asset and (vi) definition and estimation of the entropic value-at-risk. There are still two important results to the Information Theory and to Economics: (i) a more precise distinction between uncertainty and risk and (ii) development of the forecast informational gain, an enhancement of the result of Theil (1967) and Benish (1999) by using the Kullback-Leibler divergence concept.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08032005-004652 |
Date | 17 December 1999 |
Creators | Siqueira, José de Oliveira |
Contributors | Yu, Abraham Sin Oih |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0029 seconds