Return to search

Evaluation of Deep Q-Learning Applied to City Environment Autonomous Driving

This project’s goal was to assess both the challenges of implementing the Deep Q-Learning algorithm to create an autonomous car in the CARLA simulator, and the driving performance of the resulting model. An agent was trained to follow waypoints based on two main approaches. First, a camera-based approach, which allowed the agent to gather information about the environment from a camera sensor. The image along with other driving features were fed to a convolutional neural network. Second, an approach focused purely on following the waypoints without the camera sensor. The camera sensor was substituted for an array containing the agent’s angle with respect to the upcoming waypoints along with other driving features. Even though the camera-based approach was the best during evaluation, no approach was successful in consistently following the waypoints of a straight route. To increase the performance of the camera-based approach more training episodes need to be provided. Furthermore, both approaches would greatly benefit from experimentation and optimization of the model’s neural network configuration and its hyperparameters.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-519940
Date January 2024
CreatorsWedén, Jonas
PublisherUppsala universitet, Signaler och system
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 23006

Page generated in 0.0025 seconds