• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 9
  • 9
  • 7
  • 3
  • 3
  • Tagged with
  • 155
  • 155
  • 49
  • 43
  • 30
  • 28
  • 26
  • 23
  • 22
  • 19
  • 15
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE REALIZATION OF A NEW AVLNS BASED ON WINDOWS CE

Wenzheng, Zhang, Xianliang, Li, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / There is an increasing demand for practical and powerful navigation system to lead people from one place to another quickly and rightly. The introduction of a new embedded operating system, Windows CE, allows us to design a compact, low-cost, efficient autonomous vehicle location and navigation system. This paper discusses the advantages of Windows CE, demonstrates the possibility of building an AVLNS based on it. Then a realization scheme of hardware platform and navigation software is presented.
2

BMW iMPULSE : A wireless power future for the spontaneous Tandem Tribe

Hellby, Ernst January 2015 (has links)
Starting this thesis with the intention to inspire and to be inspired, I have tried to zoom out and look on designing a car from a new perspective. By telling a holistic design story rather than solving a specific problem I want people to imagine a future where one can live a modern and connected life in rural communities, all made possible after a green energy revolution. Design research, brand analysis, sketching, form verification using clay and digital modeling and advanced visualization were the main activities performed during the project. They helped me to explore, understand and successfully propose a complete story of vehicle and context. The result is BMW iMPULSE, a shared and fully autonomous vehicle that is wirelessly powered by clean energy and is always ready to support the spontaneous lifestyle
3

Design, Development, and Modeling, of a Novel Underwater Vehicle for Autonomous Reef Monitoring

January 2020 (has links)
abstract: A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control. / Dissertation/Thesis / Masters Thesis Computer Science 2020
4

RADAR Modeling For Autonomous Vehicle Simulation Environment using Open Source

Kesury, Tayabali Akhtar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Advancement in modern technology has brought with it an advent of increased interest in self-driving. The rapid growth in interest has caused a surge in the development of autonomous vehicles which in turn brought with itself a few challenges. To overcome these new challenges, automotive companies are forced to invest heavily in the research and development of autonomous vehicles. To overcome this challenge, simulations are a great tool in any arsenal that’s inclined towards making progress towards a self-driving autonomous future. There is a massive growth in the amount of computing power in today’s world and with the help of the same computing power, simulations will help test and simulate scenarios to have real time results. However, the challenge does not end here, there is a much bigger hurdle caused by the growing complexities of modelling a complete simulation environment. This thesis focuses on providing a solution for modelling a RADAR sensor for a simulation environment. This research presents a RADAR modeling technique suitable for autonomous vehicle simulation environment using open-source utilities. This study proposes to customize an onboard LiDAR model to the specification of a desired RADAR field of view, resolution, and range and then utilizes a density-based clustering algorithm to generate the RADAR output on an open-source graphical engine such as Unreal Engine (UE). High fidelity RADAR models have recently been developed for proprietary simulation platforms such as MATLAB under its automated driving toolbox. However, open-source RADAR models for open-source simulation platform such as UE are not available. This research focuses on developing a RADAR model on UE using blueprint visual scripting for off-road vehicles. The model discussed in the thesis uses 3D pointcloud data generated from the simulation environment and then clipping the data according to the FOV of the RADAR specification, it clusters the points generated from an object using DBSCAN. The model gives the distance and azimuth to the object from the RADAR sensor in 2D. This model offers the developers a base to build upon and help them develop and test autonomous control algorithms requiring RADAR sensor data. Preliminary simulation results show promise for the proposed RADAR model.
5

Predictive Path Planning For Vehicles at Non-signalized Intersections

Wu, Xihui 23 September 2020 (has links)
In the context of path planning, the non-signalized intersections are always a challenging scenario due to the mixture of traffic flow. Most path planning algorithms use the information at the current time instance to generate an optimal path. Because of the dynamics of the non-signalized intersections, iteratively generating a path in a high frequency is necessary, resulting in an enormous waste of computational resources. Rapidly-exploring Random Tree (RRT) as an effective local path planning methodology can determine a feasible path in the static environment. Few improvements are proposed to adopt the RRT to the non-signalized intersections. Gaussian Processes Regression (GPR) is used to predict the other vehicles' future location. The location information in the current and future time instance is used to generate a probability position map. The map not only avoids useless sampling procedures but also increases the speed of generating a path. The optimal steering strategy is deployed to guarantee the trajectory is collision-free in both current and future time frames. Overall, the proposed probabilistic RRT algorithm can select a collision-free path in the non-signalized intersections by combining the GPR, probability position map, and optimal-steering. / Master of Science / Path planning problem is a challenge in the non-signalized intersections. Many path planning algorithms can generate an optimal path in the space domain but not in the time domain. Thus, the algorithms need to run iteratively at a high frequency to ensure the path's optimality in the time domain. By combining prediction and the standard RRT path planning algorithm, the resulting path ensures to be optimal in the space and time domain.
6

ONLINE DOCUMENTATION AND DIAGNOSTIC SYSTEM FOR THE BEARCAT CUB

NAIK, SAURABH January 2004 (has links)
No description available.
7

Digital Map Based Navigation System For Autonomous Vehicle with DGPS Localization

Ramakrishnan, Balasubramaniam 27 August 2012 (has links)
Autonomous Vehicles (AV) can navigate itself from point `A' to point `B' without the aid of humans. Research on autonomous vehicles were primarily focused on the localization, navigation and path planning schemes. This led to numerous methods in each of the elds of focus. This research focuses on creating a scheme for the autonomous vehicle to navigate using minimal sensors and get maximum data/infor- mation from the map. At rst a digital map contains various structures and each has an associated database. This database contains the details of the environment. At present these data are manipulated for use by humans and for this map to be used with autonomous vehicle require more sensors. This work designs maps for use with autonomous vehicle and navigates using di erential GPS (dGPS) of high accuracy for localization. Then the vehicle gets path and directions from digital map and nav- igates using multiple waypoints that are provided by the path. Finally, the scheme is tested and demonstrated through simulation and test results.
8

Framework for Optimally Constrained Autonomous Driving Systems

Repisky, Philip Vaclav 30 November 2020 (has links)
The development of Automated Driving Systems (ADS) has been ongoing for decades in varying levels of sophistication. Levels of automation are defined by Society of American Engineers (SAE) as 0 through 5, with 0 being full human control and 5 being full automation control. Another way to describe levels of automation is through concepts of Functional Safety (FuSa) and Operational Safety (OpSa). These terms of FuSa and OpSa are important, because ADS testing relies on both. Current recommendations for ADS testing include both OpSa and FuSa requirements. However, an examination of ADS safety requirements (e.g., industry reports, post-crash analysis reports, etc.) reveals that ADS safety arguments, in practice, depend almost completely on well-trained human operators, referred to in the industry as in vehicle fallback test drivers (IFTD). To date, the industry has never fielded a truly SAE L4 ADS on public roads due to this persistent hurdle of needing a human operator for Operational Safety. There is a tendency in ADS testing to reference International Standards Organization (ISOs) for validated vehicles for vehicles that are still in development (i.e., unvalidated). To be clear, ISOs for ADS end products are not necessarily applicable to ADS in development. With this in mind, there is a clear gap in the industry for unvalidated ADS literature. Because of this gap, ADS testing for unvalidated vehicles often relies on safety requirements for validated vehicles. This issue remains a significant challenge for ADS testing. Recognizing this gap in on-road, in-development vehicle safety, there is a need for the ADS industry to develop a clear strategy for transitioning from an IFTD (Operational Safety) to an ADS (Functional Safety). Therefore, the purpose of this thesis is to present a framework for transitioning from Operational Safety to Functional Safety. The framework makes this possible through an inductive analysis of available definitions of onroad safety to arrive at a definition that leverages Functional and Operational Safety along a continuum. Ultimately, the framework aims to contribute to onroad safety testing for the ADS industry. / Master of Science / The development of Self-Driving Cars has been ongoing for decades in varying levels of sophistication. Levels of automation are defined by Society of American Engineers (SAE) as 0 through 5, with 0 being full human control and 5 being full automation control. Another way to describe levels of automation is through concepts of Robotic Control and Human Control. If a vehicle relies completely on Human Control, a human operator is responsible for all on-road safety. On the other hand, a fully autonomous would be considered fully in Robotic Control. These terms of Robotic Control and Human Control are important, because Self-Driving Car testing relies on both. Current recommendations for Self-Driving Car testing include both Robotic Control and Human Control requirements. However, an examination of Self-Driving Cars documentation (e.g., industry reports, post-crash analysis reports, etc.) reveals that Self-Driving Car safety arguments, in practice, depend almost completely on well-trained human operators. To date, the industry has never fielded a truly SAE L4 Self-Driving Car on public roads due to this persistent hurdle of needing a human operator for Human Control. There is a tendency in Self-Driving Car testing to reference standars for validated vehicles for vehicles that are still in development (i.e., unvalidated). To be clear, standards for Self-Driving Car end products are not necessarily applicable to Self-Driving Cars in development. With this in mind, there is a clear gap in the industry for unvalidated Self-Driving Car literature. Because of this gap, Self-Driving Car testing for unvalidated vehicles often relies on documentation for validated vehicles. This issue remains a significant challenge for Self-Driving Car testing. Recognizing this gap in on-road, in-development vehicle safety, there is a need for the Self-Driving industry to develop a clear strategy for transitioning from Human Control to Robot Control. Therefore, the purpose of this thesis is to present a framework for transitioning from Human to Robot Control. The framework makes this possible through an inductive analysis of available definitions of onroad safety to arrive at a definition that leverages all definitions of Safety along a continuum. Ultimately, the framework aims to contribute to onroad safety testing for the Self-Driving industry.
9

Use of Connected Vehicle Technology for Improving Fuel Economy and Driveability of Autonomous Vehicles

Tamilarasan, Santhosh 08 July 2019 (has links)
No description available.
10

Forward Perception Using a 2D LiDAR on the Highway for Intelligent Transportation

Willcox III, Eric N 26 April 2016 (has links)
For a little over the past decade since the DARPA Grand Challenge in 2004 and the more successful Urban Challenge in 2007 autonomous vehicles have seen a surge in popularity with car manufacturers, and companies such as Google and Uber. Light Detection And Ranging (LiDAR) has been one of the major sensors in use to sense for acting on the surrounding environment instead of the classic radar which has a much narrower field of vision. However the cost of the higher end 3D LiDAR systems which started seeing use during the DARPA challenges still have the high cost of $70,000 a piece which is an issue when trying to design a consumer friendly system on a family car. This work aims to investigate alternate 2D LiDAR systems to the costly systems currently in use in many prototypes to find a cost efficient alternative that can detect and track obstacles in front of a vehicle. The introduction begins by summarizing some related prior works, particularly papers from after the Grand Challenge as well as some about the competition itself. Detection and tracking methods for point clouds generated by the LiDAR are explored including ways to search through the data in an efficient manner to meet real-time constraints. Some of the trade-offs in going from a 3D system to a 2D system and examined along with how some of the drawbacks can be mitigated.

Page generated in 0.0765 seconds