Return to search

Performance comparison of the Extended Kalman Filter and the Recursive Prediction Error Method / Jämförelse mellan Extended Kalmanfiltret och den Rekursiva Prediktionsfelsmetoden

<p>In several projects within ABB there is a need of state and parameter estimation for nonlinear dynamic systems. One example is a project investigating optimisation of gas turbine operation. In a gas turbine there are several parameters and states which are not measured, but are crucial for the performance. Such parameters are polytropic efficiencies in compressor and turbine stages, cooling mass flows, friction coefficients and temperatures. Different methods are being tested to solve this problem of system identification or parameter estimation. This thesis describes the implementation of such a method and compares it with previously implemented identification methods. The comparison is carried out in the context of parameter estimation in gas turbine models, a dynamic load model used in power systems as well as models of other dynamic systems. Both simulated and real plant measurements are used in the study.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-1832
Date January 2003
CreatorsWiklander, Jonas
PublisherLinköping University, Department of Electrical Engineering, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text
RelationLiTH-ISY-Ex, ; 3351

Page generated in 0.0021 seconds