Over the past two decades, autonomous driving technology has made tremendous breakthroughs. With this technology, human drivers have been able to take their hands off the wheel in many scenarios and let the vehicle drive itself. Highway scenarios are less disturbed than urban scenarios, so autonomous driving is much simpler to implement and can be accomplished very well with a rule-based approach. However, a significant drawback of the rule-based approach compared to human drivers is that it is difficult to predict the intent of the vehicles in the surrounding environment by designing the algorithm’s logic. In contrast, human drivers can easily implement the intent analysis. Therefore, in this research work, we introduce the prediction module as the upstream of the autonomous driving decision-making module, so that the autonomous driving decision-maker has richer input information to better optimize the decision output by getting the intent of the surrounding vehicles. The evaluation of the final results confirms that our proposed approach is helpful for optimizing Rule-based autonomous driving decisions. / Under de senaste två decennierna har tekniken för autonom körning gjort enorma genombrott. Med denna teknik har mänskliga förare kunnat ta bort händerna från ratten i många situationer och låta fordonet köra sig självt. Scenarier på motorvägar är mindre störda än scenarier i städer, så autonom körning är mycket enklare att genomföra och kan åstadkommas mycket bra med en regelbaserad metod. En betydande nackdel med det regelbaserade tillvägagångssättet jämfört med mänskliga förare är dock att det är svårt att förutsäga avsikten hos fordonen i den omgivande miljön genom att utforma algoritmens logik. Däremot kan mänskliga förare lätt genomföra avsiktsanalysen. I det här forskningsarbetet inför vi därför förutsägelsemodulen som en uppströmsmodul för beslutsfattandet vid autonom körning, så att beslutsfattaren vid autonom körning har mer omfattande information för att bättre optimera beslutsutfallet genom att få reda på de omgivande fordonens intentioner. Utvärderingen av slutresultaten bekräftar att vårt föreslagna tillvägagångssätt är till hjälp för att optimera regelbaserade beslut om autonom körning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-322960 |
Date | January 2022 |
Creators | Chen, Jingsheng |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:858 |
Page generated in 0.0027 seconds