Return to search

Um algoritmo genético híbrido para supressão de ruídos em imagens / A hybrid genetic algorithm for image denoising

Imagens digitais são utilizadas para diversas finalidades, variando de uma simples foto com os amigos até a identificação de doenças em exames médicos. Por mais que as tecnologias de captura de imagens tenham evoluído, toda imagem adquirida digitalmente possui um ruído intrínseco a ela que normalmente é adquirido durante os processo de captura ou transmissão da imagem. O grande desafio neste tipo de problema consiste em recuperar a imagem perdendo o mínimo possível de características importantes da imagem, como cantos, bordas e texturas. Este trabalho propõe uma abordagem baseada em um Algoritmo Genético Híbrido (AGH) para lidar com este tipo de problema. O AGH combina um algoritmo genético com alguns dos melhores métodos de supressão de ruídos em imagens encontrados na literatura, utilizando-os como operadores de busca local. O AGH foi testado em imagens normalmente utilizadas como benchmark corrompidas com um ruído branco aditivo Gaussiano (N; 0), com diversos níveis de desvio padrão para o ruído. Seus resultados, medidos pelas métricas PSNR e SSIM, são comparados com os resultados obtidos por diferentes métodos. O AGH também foi testado para recuperar imagens SAR (Synthetic Aperture Radar), corrompidas com um ruído Speckle multiplicativo, e também teve seus resultados comparados com métodos especializados em recuperar imagens SAR. Através dessa abordagem híbrida, o AGH foi capaz de obter resultados competitivos em ambos os tipos de testes, chegando inclusive a obter melhores resultados em diversos casos em relação aos métodos da literatura. / Digital images are used for many purposes, ranging from a simple picture with friends to the identification of diseases in medical exams. Even though the technology for acquiring pictures has been evolving, every image digitally acquired has a noise intrinsic to it that is normally gotten during the processes of transmission or capture of the image. A big challenge in this kind of problem consists in recovering the image while losing the minimum amount of important features of the image, such as corners, borders and textures. This work proposes an approach based on a Hybrid Genetic Algorithm (HGA) to deal with this kind of problem. The HGA combines a genetic algorithm with some of the best image denoising methods found in literature, using them as local search operators. The HGA was tested on benchmark images corrupted with an additive white Gaussian noise (N;0) with many levels of standard deviation for the noise. The HGAs results, which were measured by the PSNR and SSIM metrics, were compared to the results obtained by different methods. The HGA was also tested to recover SAR (Synthetic Aperture Radar) images that were corrupted by a multiplicative Speckle noise and had its results compared against the results by other methods specialized in recovering with SAR images. Through this hybrid approach, the HGA was able to obtain results competitive in both types of tests, even being able to obtain the best results in many cases, when compared to the other methods found in the literature.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11042016-105926
Date01 December 2015
CreatorsJônatas Lopes de Paiva
ContributorsCláudio Fabiano Motta Toledo, Hélio Pedrini, Moacir Antonelli Ponti, Renato Tinós
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds