Return to search

Proposta para previsão de evasão baseada em padrões de acesso de usuários em jogos online. / Proposal for churn prediction based on online games users\' access patterns.

O mercado de jogos eletrônicos online tem crescido em ritmo acelerado nos últimos anos, particularmente a partir do surgimento do modelo de negócio baseado em serviços. Como consequência, as publicadoras destes jogos passaram a compartilhar problemas comuns na área de serviços, como a erosão do lucro causada pela evasão de usuários. Modelos preditivos têm sido utilizados no combate à evasão em mercados como os de telefonia móvel e de cartões de crédito, setores que detêm um grande volume de informações demográficas e econômicas a respeito dos seus consumidores. Já os publicadores de jogos muitas vezes só possuem o endereço eletrônico dos jogadores. O objetivo deste trabalho é propor um modelo de previsão de evasão com base exclusivamente nos padrões de acesso de usuários em jogos online, onde estes registros temporais são submetidos a um conjunto de operadores que analisam os dados no domínio do plano tempo-frequência, utilizando a Transformada Discreta de Wavelet. Sua principal contribuição está na proposta de parametrização dos dados de entrada para classificadores probabilísticos baseados no algoritmo k-Nearest Neighbors. Testados com dados reais de acessos de usuários ao longo de alguns meses em um jogo online, os classificadores foram avaliados com o uso de curvas ROC (Receiver Operating Characteristic) e de elevação. A abordagem proposta nesta tese, baseada na análise no domínio do plano tempo-frequência, apresentou resultados satisfatórios. Não apenas superiores se comparados com as abordagens no domínio do tempo ou da frequência, mas também comparáveis aos desempenhos encontrados por modelos com centenas de variáveis preditivas utilizados em outros mercados. / The online gaming market has rapidly grown in recent years, particularly since the rise of the service-based business model. As a result, the publishers of these games have started to share usual problems from the services business, like the profit erosion caused by customer churn. Predictive models have been used to address the churn problem in the mobile phones and credit cards markets, where companies have a huge volume of demographic and economic data about their customers. While game publishers often have only their users email addresses. The goal of this study is to propose a model for churn prediction based solely on the online games users access patterns, where these time entries are fed into a set of operators that are able to analyze the data in the time-frequency plane domain, using the Discrete Wavelet Transform. Its main contribution is the input data parameterization proposed for the probabilistic classifiers based on the k-Nearest Neighbors algorithm. Tested with real data from an online game users access over a few months, the classifiers were evaluated using ROC (Receiver Operating Characteristic) and lift curves. The approach proposed in this thesis, based on the analysis of the time-frequency plane domain, has shown satisfactory results. Not only higher when compared with approaches based on both time or frequency domains, but also comparable to performances found on models with hundreds of predictive variables used in other markets.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11082011-125123
Date24 May 2011
CreatorsEmiliano Gonçalves de Castro
ContributorsMarcos de Sales Guerra Tsuzuki, Esteban Walter Gonzalez Clua, Thiago de Castro Martins, Fábio Kawaoka Takase, Romero Tori
PublisherUniversidade de São Paulo, Engenharia Mecânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds