Return to search

Comportement asymptotique de processus avec sauts et applications pour des modèles avec branchement

L'objectif de ce travail est d'étudier le comportement en temps long d'un modèle de particules avec une interaction de type branchement. Plus précisément, les particules se déplacent indépendamment suivant une dynamique markovienne jusqu'au temps de branchement, où elles donnent naissance à de nouvelles particules dont la position dépend de celle de leur mère et de son nombre d'enfants. Dans la première partie de ce mémoire nous omettons le branchement et nous étudions le comportement d'une seule lignée. Celle-ci est modélisée via un processus de Markov qui peut admettre des sauts, des parties diffusives ou déterministes par morceaux. Nous quantifions la convergence de ce processus hybride à l'aide de la courbure de Wasserstein, aussi nommée courbure grossière de Ricci. Cette notion de courbure, introduite récemment par Joulin, Ollivier, et Sammer correspond mieux à l'étude des processus avec sauts. Nous établissons une expression du gradient du semigroupe des processus de Markov stochastiquement monotone, qui nous permet d'expliciter facilement leur courbure. D'autres bornes fines de convergence en distance de Wasserstein et en variation totale sont aussi établies. Dans le même contexte, nous démontrons qu'un processus de Markov, qui change de dynamique suivant un processus discret, converge rapidement vers un équilibre, lorsque la moyenne des courbures des dynamiques sous-jacentes est strictement positive. Dans la deuxième partie de ce mémoire, nous étudions le comportement de toute la population de particules. Celui-ci se déduit du comportement d'une seule lignée grâce à une formule many-to-one, c'est-à-dire un changement de mesure de type Girsanov. Via cette transformation, nous démontrons une loi des grands nombres et établissons une limite macroscopique, pour comparer nos résultats aux résultats déjà connus en théorie des équations aux dérivées partielles. Nos résultats sont appliqués sur divers modèles ayant des applications en biologie et en informatique. Parmi ces modèles, nous étudierons le comportement en temps long de la plus grande particule dans un modèle simple de population structurée en taille

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00862913
Date14 June 2013
CreatorsCloez, Bertrand
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds