Dans cette thèse, nous étudions quelques opérateurs présentant un changement de signe dans leur partie principale. Ces opérateurs apparaissent notamment en électromagnétisme lorsqu'on s'intéresse à la propagation des ondes dans des structures constituées de matériaux usuels et de matériaux négatifs en régime harmonique. Ici, nous appelons matériau négatif un matériau modélisé par une permittivité diélectrique et/ou une perméabilité magnétique négative(s). En raison du changement de signe des coefficients physiques, on ne peut utiliser les outils classiques pour étudier ce problème. Dans la première partie de ce mémoire, nous nous concentrons sur le problème de transmission scalaire auquel on peut réduire les équations de Maxwell lorsque la géométrie et les données présentent une invariance dans une direction. Avec la technique de la T-coercivité, basée sur des arguments géométriques, nous établissons des conditions nécessaires et suffisantes pour prouver le caractère bien posé de ce problème en domaine borné dans H^1. Nous montrons également comment on peut utiliser cette approche pour justifier la convergence des méthodes usuelles d'approximation par éléments finis. Dans un deuxième temps, au moyen de techniques différentes, issues de l'étude des équations elliptiques dans des domaines à géométrie singulière, nous définissons un nouveau cadre fonctionnel pour recouvrer le caractère Fredholm lorsque celui-ci est perdu dans H^1. Il apparaît alors un phénomène surprenant de trou noir. Tout se passe comme si des ondes étaient aspirées en un point. Nous réalisons ensuite une étude asymptotique par rapport à une petite perturbation de l'interface entre le matériau positif et le matériau négatif dans ce cadre fonctionnel. Au cours de notre analyse, nous mettons en évidence un curieux phénomène de valeur propre clignotante. La troisième partie de ce document est consacrée à l'étude des équations de Maxwell. Nous travaillons d'abord sur les équations de Maxwell 2D en exploitant les résultats obtenus pour le problème scalaire. Puis, nous nous intéressons aux équations de Maxwell 3D. Nous montrons qu'elles sont bien posées dès lors que les problèmes scalaires associés sont bien posés. Enfin, dans une quatrième partie, nous étudions le problème de transmission intérieur apparaissant en théorie de la diffraction. L'opérateur pour ce problème présente également un changement de signe dans sa partie principale. Nous abordons son étude en utilisant l'analogie existant avec le problème de transmission entre un matériau positif et un matériau négatif. Certaines configurations pour ce problème de transmission intérieur conduisent à considérer un problème de transmission du quatrième ordre avec changement de signe. Nous prouvons que cet opérateur présente des propriétés étonnamment différentes de celles de l'opérateur scalaire du second ordre.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00763206 |
Date | 12 October 2012 |
Creators | Chesnel, Lucas |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds