1 |
Étude de quelques problèmes de transmission avec changement de signe. Application aux métamatériaux.Chesnel, Lucas 12 October 2012 (has links) (PDF)
Dans cette thèse, nous étudions quelques opérateurs présentant un changement de signe dans leur partie principale. Ces opérateurs apparaissent notamment en électromagnétisme lorsqu'on s'intéresse à la propagation des ondes dans des structures constituées de matériaux usuels et de matériaux négatifs en régime harmonique. Ici, nous appelons matériau négatif un matériau modélisé par une permittivité diélectrique et/ou une perméabilité magnétique négative(s). En raison du changement de signe des coefficients physiques, on ne peut utiliser les outils classiques pour étudier ce problème. Dans la première partie de ce mémoire, nous nous concentrons sur le problème de transmission scalaire auquel on peut réduire les équations de Maxwell lorsque la géométrie et les données présentent une invariance dans une direction. Avec la technique de la T-coercivité, basée sur des arguments géométriques, nous établissons des conditions nécessaires et suffisantes pour prouver le caractère bien posé de ce problème en domaine borné dans H^1. Nous montrons également comment on peut utiliser cette approche pour justifier la convergence des méthodes usuelles d'approximation par éléments finis. Dans un deuxième temps, au moyen de techniques différentes, issues de l'étude des équations elliptiques dans des domaines à géométrie singulière, nous définissons un nouveau cadre fonctionnel pour recouvrer le caractère Fredholm lorsque celui-ci est perdu dans H^1. Il apparaît alors un phénomène surprenant de trou noir. Tout se passe comme si des ondes étaient aspirées en un point. Nous réalisons ensuite une étude asymptotique par rapport à une petite perturbation de l'interface entre le matériau positif et le matériau négatif dans ce cadre fonctionnel. Au cours de notre analyse, nous mettons en évidence un curieux phénomène de valeur propre clignotante. La troisième partie de ce document est consacrée à l'étude des équations de Maxwell. Nous travaillons d'abord sur les équations de Maxwell 2D en exploitant les résultats obtenus pour le problème scalaire. Puis, nous nous intéressons aux équations de Maxwell 3D. Nous montrons qu'elles sont bien posées dès lors que les problèmes scalaires associés sont bien posés. Enfin, dans une quatrième partie, nous étudions le problème de transmission intérieur apparaissant en théorie de la diffraction. L'opérateur pour ce problème présente également un changement de signe dans sa partie principale. Nous abordons son étude en utilisant l'analogie existant avec le problème de transmission entre un matériau positif et un matériau négatif. Certaines configurations pour ce problème de transmission intérieur conduisent à considérer un problème de transmission du quatrième ordre avec changement de signe. Nous prouvons que cet opérateur présente des propriétés étonnamment différentes de celles de l'opérateur scalaire du second ordre.
|
2 |
Méthodes hybrides d'ordre élevé pour les problèmes d'interface / Hybrid high-order methods for interface problemsChave, Florent 12 November 2018 (has links)
Le but de cette thèse est de développer et d’analyser les méthodes Hybrides d’Ordre Élevé (HHO: Hybrid High-Order, en anglais) pour des problèmes d’interfaces. Nous nous intéressons à deux types d’interfaces (i) les interfaces diffuses, et (ii) les interfaces traitées comme frontières internes du domaine computationnel. La première moitié de ce manuscrit est consacrée aux interfaces diffuses, et plus précisément aux célèbres équations de Cahn–Hilliard qui modélisent le processus de séparation de phase par lequel les deux composants d’un fluide binaire se séparent pour former des domaines purs en chaque composant. Dans la deuxième moitié, nous considérons des modèles à dimension hybride pour la simulation d’écoulements de Darcy et de transports passifs en milieu poreux fracturé, dans lequel la fracture est considérée comme un hyperplan (d’où le terme hybride) qui traverse le domaine computationnel. / The purpose of this Ph.D. thesis is to design and analyse Hybrid High-Order (HHO) methods on some interface problems. By interface, we mean (i) diffuse interface, and (ii) interface as an immersed boundary. The first half of this manuscrit is dedicated to diffuse interface, more precisely we consider the so called Cahn–Hilliard problem that models the process of phase separation, by which the two components of a binary fluid spontaneously separate and form domains pure in each component. In the second half, we deal with the interface as an immersed boundary and consider a hybrid dimensional model for the simulation of Darcy flows and passive transport in fractured porous media, in which the fracture is considered as an hyperplane that crosses our domain of interest.
|
3 |
Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segment.Bonnafé, Alain 16 July 2013 (has links) (PDF)
Les développements asymptotiques topologiques n'ont pas encore été étudiés pour les équations elliptiques quasilinéaires. Cette question apparaît dans la perspective d'appliquer les méthodes d'asymptotique topologique en optimisation de forme aux équations non linéaires de l'élasticité comme en imagerie pour la détection d'ensembles de codimension $\geq 2$ (points en 2D ou courbes en 3D). Dans la Partie I, notre principal résultat réside dans l'obtention du développement asymptotique topologique pour une classe d'équations elliptiques quasilinéaires, perturbées dans des sous-domaines non vides. Le gradient topologique peut être décomposé en un terme linéaire classique et en un terme nouveau, qui rend compte de la non linéarité. L'étude des difficultés spécifiques qui apparaissent avec l'équation de p-Laplace, par comparaison avec l'équation de Laplace, montre qu'un point central réside dans la possibilité de définir la variation de l'état direct à l'échelle 1 dans R^N. Nous étudions en conséquence des espaces de Sobolev à poids et quotientés, dont la semi-norme est la somme des normes L^p et L^2 du gradient dans R^N. Puis nous construisons une classe d'équations elliptiques quasilinéaires, telle que le problème définissant l'état direct à l'échelle 1 vérifie une double propriété de p- et 2- ellipticité. La méthode se poursuit par l'étude du comportement asymptotique de la solution du problème d'interface non linéaire dans R^N et par une mise en dualité appropriée des états directs et adjoints aux différentes étapes d'approximation pour les variations de l'état direct. La Partie II traite d'estimations et de développements asymptotiques de p-capacités de condensateurs, dont l'obstacle est d'intérieur vide et de codimension $\geq 2$. Après quelques résultats préliminaires, nous introduisons les condensateurs équidistants pour étudier le cas des segments. L'effet anisotrope engendré par un segment dans l'équation de p-Laplace est tel que l'inégalité de réarrangement de Pólya-Szegö pour les intégrales de type Dirichlet fournit un minorant trivial. De plus, quand p > N, on ne peut construire par extension une solution admissible pour le segment, aussi petite sa longueur soit-elle, à partir du cas du point. Nous établissons une minoration de la p-capacité N-dimensionnelle d'un segment, qui fait intervenir les p-capacités d'un point, respectivement en dimensions N et (N−1). Les cas de positivité de la p-capacité s'en déduisent. Notre méthode peut être étendue à des obstacles de dimensions supérieures et de codimension $\geq 2$. Introduisant les condensateurs elliptiques, nous montrons que le gradient topologique de la 2-capacité n'est pas un outil approprié pour distinguer les courbes et les obstacles d'intérieur non vide en 2D. Une solution pourrait être de choisir différentes valeurs de p ou bien de considérer le développement asymptotique à l'ordre 2, i.e. la hessienne topologique.
|
Page generated in 0.0696 seconds