Spelling suggestions: "subject:"analyse asymptotic anthropologique""
1 |
Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segment.Bonnafé, Alain 16 July 2013 (has links) (PDF)
Les développements asymptotiques topologiques n'ont pas encore été étudiés pour les équations elliptiques quasilinéaires. Cette question apparaît dans la perspective d'appliquer les méthodes d'asymptotique topologique en optimisation de forme aux équations non linéaires de l'élasticité comme en imagerie pour la détection d'ensembles de codimension $\geq 2$ (points en 2D ou courbes en 3D). Dans la Partie I, notre principal résultat réside dans l'obtention du développement asymptotique topologique pour une classe d'équations elliptiques quasilinéaires, perturbées dans des sous-domaines non vides. Le gradient topologique peut être décomposé en un terme linéaire classique et en un terme nouveau, qui rend compte de la non linéarité. L'étude des difficultés spécifiques qui apparaissent avec l'équation de p-Laplace, par comparaison avec l'équation de Laplace, montre qu'un point central réside dans la possibilité de définir la variation de l'état direct à l'échelle 1 dans R^N. Nous étudions en conséquence des espaces de Sobolev à poids et quotientés, dont la semi-norme est la somme des normes L^p et L^2 du gradient dans R^N. Puis nous construisons une classe d'équations elliptiques quasilinéaires, telle que le problème définissant l'état direct à l'échelle 1 vérifie une double propriété de p- et 2- ellipticité. La méthode se poursuit par l'étude du comportement asymptotique de la solution du problème d'interface non linéaire dans R^N et par une mise en dualité appropriée des états directs et adjoints aux différentes étapes d'approximation pour les variations de l'état direct. La Partie II traite d'estimations et de développements asymptotiques de p-capacités de condensateurs, dont l'obstacle est d'intérieur vide et de codimension $\geq 2$. Après quelques résultats préliminaires, nous introduisons les condensateurs équidistants pour étudier le cas des segments. L'effet anisotrope engendré par un segment dans l'équation de p-Laplace est tel que l'inégalité de réarrangement de Pólya-Szegö pour les intégrales de type Dirichlet fournit un minorant trivial. De plus, quand p > N, on ne peut construire par extension une solution admissible pour le segment, aussi petite sa longueur soit-elle, à partir du cas du point. Nous établissons une minoration de la p-capacité N-dimensionnelle d'un segment, qui fait intervenir les p-capacités d'un point, respectivement en dimensions N et (N−1). Les cas de positivité de la p-capacité s'en déduisent. Notre méthode peut être étendue à des obstacles de dimensions supérieures et de codimension $\geq 2$. Introduisant les condensateurs elliptiques, nous montrons que le gradient topologique de la 2-capacité n'est pas un outil approprié pour distinguer les courbes et les obstacles d'intérieur non vide en 2D. Une solution pourrait être de choisir différentes valeurs de p ou bien de considérer le développement asymptotique à l'ordre 2, i.e. la hessienne topologique.
|
2 |
Topological asymptotic expansions for a class of quasilinear elliptic equations. Estimates and asymptotic expansions of condenser p-capacities. The anisotropic case of segments / Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segmentBonnafé, Alain 16 July 2013 (has links)
La Partie I présente l’obtention du développement asymptotique topologique pour une classe d’équations elliptiques quasilinéaires. Un point central réside dans la possibilité de définir la variation de l’état direct à l’échelle 1 dans R^N. Après avoir défini un cadre fonctionnel approprié faisant intervenir les normes L^p et L^2, et avoir justifié la classe d’équations considérée, la méthode se poursuit par l’étude du comportement asymptotique de la solution du problème d’interface non linéaire dans R^N et par une mise en dualité appropriée des états direct et adjoint aux différentes étapes d’approximation.La Partie II traite d’estimations et de développements asymptotiques de p-capacités de condensateurs, dont l’obstacle est d’intérieur vide et de codimension > ou = 2. Après les résultats préliminaires, les condensateurs équidistants permettent de donner deux illustrations de l’anisotropie engendrée par un segment dans l’équation de p-Laplace, puis d’établir une minoration de la p-capacité N-dimensionnelle d’un segment, qui fait intervenir les p-capacités d’un point, respectivement en dimensions N et (N-1). Les condensateurs elliptiques permettent d’établir que le gradient topologique de la 2-capacité n’est pas un outil approprié pour distinguer les courbes des obstacles d’intérieur non vide en 2D / Part I deals with obtaining topological asymptotic expansions for a class of quasilinear elliptic equations. A key point lies in the ability to define the variation of the direct state at scale 1 in R^N. After setting up an appropriate functional framework involving both the L^p and the L^2 norms, and then justifying the chosen class of equations, the approach goes on with the study of the asymptotic behavior of the solution of the nonlinear interface problem in R^N and by setting up an adequate duality scheme between the direct and adjoint states at each step of approximation. Part II deals with estimates and asymptotic expansions of condenser p-capacities and focuses on obstacles with empty interiors and with codimensions > ou = 2. After preliminary results, equidistant condensers are introduced to point out the anisotropy caused by a segment in the p-Laplace equation, and to provide a lower bound to the N-dimensional condenser p-capacity of a segment, by means of the N-dimensional and of the (N-1)-dimensional condenser p-capacities of apoint. Introducing elliptical condensers, it turns out that the topological gradient of the 2-capacity is not an appropriate tool to separate curves and obstacles with nonempty interior in 2D
|
Page generated in 0.0794 seconds