Estudia la regularidad, existencia, unicidad y dependencia continua de la solución de la eucación lineal homogénea KdV-Kuramoto-Sivashinsky (P) ut + uxxx + β(uxxxx + uxx) = 0 en Hs−4 per con u(0) = φ ∈ Hs per considerando β una constante positiva, s un número real y denotando por Hs per al espacio de Sobolev periódico de orden s, siguiendo las ideas de [14]. Además, siguiendo estas ideas, incluimos el estudio de la buena colocación del problema de Cauchy asociado a la ecuación del calor y de la onda. Para esto usamos la teoría de Fourier, análisis armónico y la teoría de semigrupos de operadores lineales. / Tesis
Identifer | oai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/11339 |
Date | January 2019 |
Creators | Milla Garcia, Luis |
Contributors | Santiago Ayala, Yolanda Silvia |
Publisher | Universidad Nacional Mayor de San Marcos |
Source Sets | Universidad Nacional Mayor de San Marcos - SISBIB PERU |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | Universidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM |
Rights | info:eu-repo/semantics/openAccess, https://creativecommons.org/licenses/by-nc-sa/4.0/ |
Page generated in 0.0019 seconds