Return to search

Une méthode basée sur le raffinement pour la modélisation de processus

There is an increasing trend to consider the processes of an organization as one of its highly valuable assets. Processes are the reusable assets of an organization which define the procedures of routine working for accomplishing its goals. The software industry has the potential to become one of the most internationally dispersed high-tech industry. With growing importance of software and services sector, standardization of processes is also becoming crucial to maintain credibility in the market. Software development processes follow a lifecycle that is very similar to the software development lifecycle. Similarly, multiple phases of a process development lifecycle follow an iterative/incremental approach that leads to continuous process improvement. This incremental approach calls for a refinement based strategy to develop, execute and maintain software development processes. This thesis develops a conceptual foundation for refinement based development of software processes keeping in view the precise requirements for each individual phase of process development lifecycle. It exploits model driven engineering to present a multi-metamodel framework for the development of software processes, where each metamodel corresponds to a different phase of a process. A process undergoes a series of refinements till it is enriched with execution capabilities. Keeping in view the need to comply with the adopted standards, the architecture of process modeling approach exploits the concept of abstraction. This mechanism also caters for special circumstances where a software enterprise needs to follow multiple process standards for the same project. On the basis of the insights gained from the examination of contemporary offerings in this domain, the proposed process modeling framework tends to foster an architecture that is developed around the concepts of ''design by contract" and ''design for reuse". This allows to develop a process model that is modular in structure and guarantees the correctness of interactions between the constituent activities. Separation of concerns being the motivation, data-flow within a process is handled at a different abstraction level than the control-flow. Conformance between these levels allows to offer a bi-layered architecture that handles the flow of data through an underlying event management system. An assessment of the capabilities of the proposed approach is provided through a comprehensive patterns-based analysis, which allows a direct comparison of its functionality with other process modeling approaches.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00978732
Date08 January 2014
CreatorsGOLRA, Fahad Rafique
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds