Return to search

Anotação automática semissupervisionada de papéis semânticos para o português do Brasil / Automatic semi-supervised semantic role labeling for Brazilian Portuguese

A anotac~ao de papeis sem^anticos (APS) e uma tarefa do processamento de lngua natural (PLN) que permite analisar parte do signicado das sentencas atraves da detecc~ao dos participantes dos eventos (e dos eventos em si) que est~ao sendo descritos nelas, o que e essencial para que os computadores possam usar efetivamente a informac~ao codicada no texto. A maior parte das pesquisas desenvolvidas em APS tem sido feita para textos em ingl^es, considerando as particularidades gramaticais e sem^anticas dessa lngua, o que impede que essas ferramentas e resultados sejam diretamente transportaveis para outras lnguas como o portugu^es. A maioria dos sistemas de APS atuais emprega metodos de aprendizado de maquina supervisionado e, portanto, precisa de um corpus grande de senten cas anotadas com papeis sem^anticos para aprender corretamente a tarefa. No caso do portugu^es do Brasil, um recurso lexical que prov^e este tipo de informac~ao foi recentemente disponibilizado: o PropBank.Br. Contudo, em comparac~ao com os corpora para outras lnguas como o ingl^es, o corpus fornecido por este projeto e pequeno e, portanto, n~ao permitiria que um classicador treinado supervisionadamente realizasse a tarefa de anotac~ao com alto desempenho. Para tratar esta diculdade, neste trabalho emprega-se uma abordagem semissupervisionada capaz de extrair informac~ao relevante tanto dos dados anotados disponveis como de dados n~ao anotados, tornando-a menos dependente do corpus de treinamento. Implementa-se o algoritmo self-training com modelos de regress~ ao logstica (ou maxima entropia) como classicador base, para anotar o corpus Bosque (a sec~ao correspondente ao CETENFolha) da Floresta Sinta(c)tica com as etiquetas do PropBank.Br. Ao algoritmo original se incorpora balanceamento e medidas de similaridade entre os argumentos de um verbo especco para melhorar o desempenho na tarefa de classicac~ao de argumentos. Usando um benchmark de avaliac~ao implementado neste trabalho, a abordagem semissupervisonada proposta obteve um desempenho estatisticamente comparavel ao de um classicador treinado supervisionadamente com uma maior quantidade de dados anotados (80,5 vs. 82,3 de \'F IND. 1\', p > 0, 01) / Semantic role labeling (SRL) is a natural language processing (NLP) task able to analyze part of the meaning of sentences through the detection of the events they describe and the participants involved, which is essential for computers to eectively understand the information coded in text. Most of the research carried out in SRL has been done for texts in English, considering the grammatical and semantic particularities of that language, which prevents those tools and results to be directly transported to other languages such as Portuguese. Most current SRL systems use supervised machine learning methods and require a big corpus of sentences annotated with semantic roles in order to learn how to perform the task properly. For Brazilian Portuguese, a lexical resource that provides this type of information has recently become available: PropBank.Br. However, in comparison with corpora for other languages such as English, the corpus provided by that project is small and it wouldn\'t allow a supervised classier to perform the labeling task with good performance. To deal with this problem, in this dissertation we use a semi-supervised approach capable of extracting relevant information both from annotated and non-annotated data available, making it less dependent on the training corpus. We implemented the self-training algorithm with logistic regression (or maximum entropy) models as base classier to label the corpus Bosque (section CETENFolha) from the Floresta Sintá(c)tica with the PropBank.Br semantic role tags. To the original algorithm, we incorporated balancing and similarity measures between verb-specic arguments so as to improve the performance of the system in the argument classication task. Using an evaluation benchmark implemented in this research project, the proposed semi-supervised approach has a statistical comparable performance as the one of a supervised classier trained with more annotated data (80,5 vs. 82,3 de \'F IND. 1\', p > 0, 01).

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14032013-150816
Date22 January 2013
CreatorsManchego, Fernando Emilio Alva
ContributorsRosa, João Luis Garcia
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0015 seconds