Return to search

Filtragem automática de opiniões falsas: comparação compreensiva dos métodos baseados em conteúdo / Automatic filtering of false opinions: comprehensive comparison of content-based methods

Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T17:30:32Z
No. of bitstreams: 1
CARDOSO_Emerson_2017.pdf: 3299853 bytes, checksum: bda5605a1fb8e64f503215e839d2a9a6 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T17:30:45Z (GMT) No. of bitstreams: 1
CARDOSO_Emerson_2017.pdf: 3299853 bytes, checksum: bda5605a1fb8e64f503215e839d2a9a6 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-10-09T17:32:37Z (GMT) No. of bitstreams: 1
CARDOSO_Emerson_2017.pdf: 3299853 bytes, checksum: bda5605a1fb8e64f503215e839d2a9a6 (MD5) / Made available in DSpace on 2017-10-09T17:32:49Z (GMT). No. of bitstreams: 1
CARDOSO_Emerson_2017.pdf: 3299853 bytes, checksum: bda5605a1fb8e64f503215e839d2a9a6 (MD5)
Previous issue date: 2017-08-04 / Não recebi financiamento / Before buying a product or choosing for a trip destination, people often seek other people’s opinions to obtain a vision of the quality of what they want to acquire. Given that, opinions always had great influence on the purchase decision. Following the enhancements of the Internet and a huge increase in the volume of data traffic, social networks were created to help users post and view all kinds of information, and this caused people to also search for opinions on the Web. Sites like TripAdvisor and Yelp make it easier to share online reviews, since they help users to post their opinions from anywhere via smartphones and enable product manufacturers to gain relevant feedback quickly in a centralized way. As a result, most people nowadays trust personal recommendations as much as online reviews. However, competition between service providers and product manufacturers have also increased in social media, leading to the first cases of spam reviews: deceptive opinions published by hired people that try to promote or defame products or businesses. These reviews are carefully written in order to look like authentic ones, making it difficult to be detected by humans or automatic methods. Thus, they are used, in a misleading way, in attempt to control the general opinion, causing financial harm to business owners and users. Several approaches have been proposed for spam review detection and most of them use techniques involving machine learning and natural language processing. However, despite all progress made, there are still relevant questions that remain open, which require a criterious analysis in order to be properly answered. For instance, there is no consensus whether the performance of traditional classification methods can be affected by incremental learning or changes in reviews’ features over time; also, there is no consensus whether there is statistical difference between performances of content-based classification methods. In this scenario, this work offers a comprehensive comparison between traditional machine learning methods applied in spam review detection. This comparison is made in multiple setups, employing different types of learning and data sets. The experiments performed along with statistical analysis of the results corroborate offering appropriate answers to the existing questions. In addition, all results obtained can be used as baseline for future comparisons. / Antes de comprar um produto ou escolher um destino de viagem, muitas pessoas costumam buscar por opiniões alheias para obter uma visão da qualidade daquilo que se deseja adquirir. Assim, as opiniões sempre exerceram grande influência na decisão de compra. Com o avanço da Internet e aumento no volume de informações trafegadas, surgiram redes sociais que possibilitam compartilhar e visualizar informações de todo o tipo, fazendo com que pessoas passassem a buscar também por opiniões na Web. Atualmente, sites especializados, como TripAdvisor e Yelp, oferecem um sistema de compartilhamento de opiniões online (reviews) de maneira fácil, pois possibilitam que usuários publiquem suas opiniões de qualquer lugar através de smartphones, assim como também permitem que fabricantes de produtos e prestadores de serviços obtenham feedbacks relevantes de maneira centralizada e rápida. Em virtude disso, estudos indicam que atualmente a maioria dos usuários confia tanto em recomendações pessoais quanto em reviews online. No entanto, a competição entre prestadores de serviços e fabricantes de produtos também aumentou nas redes sociais, o que levou aos primeiros casos de spam reviews: opiniões enganosas publicadas por pessoas contratadas que tentam promover ou difamar produtos ou serviços. Esses reviews são escritos cuidadosamente para parecerem autênticos, o que dificulta sua detecção por humanos ou por métodos automáticos. Assim, eles são usados para tentar, de maneira enganosa, controlar a opinião geral, podendo causar prejuízos para empresas e usuários. Diversas abordagens para a detecção de spam reviews vêm sendo propostas, sendo que a grande maioria emprega técnicas de aprendizado de máquina e processamento de linguagem natural. No entanto, apesar dos avanços já realizados, ainda há questionamentos relevantes que permanecem em aberto e demandam uma análise criteriosa para serem respondidos. Por exemplo, não há um consenso se o desempenho de métodos tradicionais de classificação pode ser afetado em cenários que demandam aprendizado incremental ou por mudanças nas características dos reviews devido ao fator cronológico, assim como também não há um consenso se existe diferença estatística entre os desempenhos dos métodos baseados no conteúdo das mensagens. Neste cenário, esta dissertação oferece uma análise e comparação compreensiva dos métodos tradicionais de aprendizado de máquina, aplicados na detecção de spam reviews. A comparação é realizada em múltiplos cenários, empregando-se diferentes tipos de aprendizado e bases de dados. Os experimentos realizados, juntamente com análise estatística dos resultados, corroboram a oferecer respostas adequadas para os questionamentos existentes. Além disso, os resultados obtidos podem ser usados como baseline para comparações futuras.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/9141
Date04 August 2017
CreatorsCardoso, Emerson Freitas
ContributorsAlmeida, Tiago Agostinho de
PublisherUniversidade Federal de São Carlos, Câmpus Sorocaba, Programa de Pós-graduação em Ciência da Computação (Campus SOROCABA), UFSCar
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds