Return to search

Cross Site Product Page Classification with Supervised Machine Learning / Webbsideöverskridande klassificering av produktsidor med övervakad maskininlärning

This work outlines a possible technique for identifying webpages that contain product  specifications. Using support vector machines a product web page classifier was constructed and tested with various settings. The final result for this classifier ended up being 0.958 in precision and 0.796 in recall for product pages. The scores imply that the method could be considered a valid technique in real world web classification tasks if additional features and more data were made available.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-189555
Date January 2016
CreatorsHuss, Jakob
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0126 seconds