Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the embryo that have great potential for regenerative therapies because of their ability to self-renew and differentiate into almost all cell types. However, this developmental potential is influenced by the local cellular microenvironment, including cell surface bound ligands. In this study, we synthesized an artificial stem cell niche wherein vascular endothelial growth factor A (VEGFA) was functionally immobilized in an agarose hydrogel. Immobilized VEGFA treatments were able to upregulate mesodermal markers, brachyury and VEGF receptor 2, by day 4 and were CD34+CD41+ by day seven. Subsequently, VEGFA immobilized treatments were able to generate colony forming cells by day fourteen. This work demonstrates our ability to use functionalized hydrogels to guide ESCs toward blood progenitor cells and serves as a useful tool to replicate aspects of the embryonic microenvironment.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/24626 |
Date | 27 July 2010 |
Creators | Rahman, Muhammad Nafeesur |
Contributors | Shoichet, Molly, Zandstra, Peter W. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0027 seconds