Return to search

Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées.

Cette thèse propose différentes méthodes numériques permettant de simuler le comportement des plasmas ou des faisceaux de particules chargées à coût réduit. Le mouvement de particules chargées soumises à un champ électromagnétique est régi par l'équation de Vlasov. Celle-ci est couplée aux équations de Maxwell pour le champ électromagnétique ou à l'équation de Poisson dans un cas simplifié. Plusieurs types de modèles existent pour résoudre ce système. Dans les modèles cinétiques, les particules sont représentées par une fonction de distribution f(x,v,t) qui vérifie l'équation de Vlasov. Dans le cas général tridimensionnel (3D), le système fait apparaître 7 variables. Les calculs sur ordinateur deviennent rapidement très lourds. Les modèles fluides de plasma s'intéressent quant à eux à des quantités macroscopiques déduites de f par des intégrales en vitesse, telles que la densité, la vitesse moyenne et la température. Ces quantités ne dépendent que de la position x et du temps t. Le coût numérique est ainsi réduit, mais la précision s'en trouve altérée. Dans la première partie de cette thèse, une méthode multi-fluides est utilisée pour la résolution du système de Vlasov-Poisson 1D. Elle est basée sur la connaissance a priori de la forme prise par la fonction de distribution f. Deux possibilités sont étudiées : une somme de masse de Dirac et le modèle multi-water-bag. Ce type de méthodes est plutôt adapté aux systèmes restant proches de l'état d'équilibre. La deuxième partie propose de décomposer f en une partie d'équilibre et une perturbation. L'équilibre est résolu par une méthode fluide alors que la perturbation est résolue par une méthode cinétique. On construit notamment un schéma préservant l'asymptotique pour le système de Vlasov-Poisson-BGK, basé sur une telle décomposition. On étudie dans la troisième partie la méthode Particle-In-Cell (PIC) en géométrie 2D axisymétrique. Un travail basé sur l'analyse isogéométrique est présenté, ainsi qu'un code PIC - Galerkin Discontinu parallélisé sur carte graphique (GPU). Cette architecture permet de réduire de manière significative les temps de calculs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00735569
Date04 October 2012
CreatorsCrestetto, Anaïs
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds