Spelling suggestions: "subject:"schéma préserver l'asymptotic"" "subject:"schéma préservation l'asymptotic""
1 |
Analyse numérique de modèles de dérive-diffusion : convergence et comportements asymptotiques / Numerical analysis of drift-diffusion models : convergence and asymptotic behaviorsColin, Pierre-Louis 27 June 2016 (has links)
Dans cette thèse, nous nous intéressons à un modèle simplifié de corrosion issu du modèle ''Diffusion Poisson Coupled Model'' (DPCM). Nous analysons de manière approfondie le schéma numérique qui a été implémenté dans le code CALIPSO utilisé par l'ANDRA. Il est de type Euler implicite en temps et volumes finis en espace, avec des flux de Scharfetter-Gummel. Nous étudions notamment la convergence de ce schéma ainsi que son comportement asymptotique en différentes limites de paramètres. Enfin, nous explorons différentes possibilités pour augmenter l'ordre en temps. / In this PhD thesis, we are interested in a simplified corrosion model derived from the Diffusion Poisson Coupled Model (DPCM). We analyze the numerical scheme implemented in the CALIPSO code used by the French nuclear waste management agency ANDRA. It is a backward Euler scheme in time and a finite volume scheme in space, with Schafetter-Gummel approximation of the convection-diffusion fluxes. We study the convergence of this scheme and its asymptotic behavior for different limits of parameters. Finally, we compare several higher order schemes in time.
|
2 |
Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échellesRambaud, Amélie 05 December 2011 (has links) (PDF)
Nous étudions plusieurs aspects d'équations aux dérivées partielles multi-échelles. Pour trois exemples, la présence de multiples échelles, spatiales ou temporelles, motive un travail de modélisation mathématique ou constitue un enjeu de discrétisation. La première partie est consacrée à la construction et l'étude d'un système multicouche de type Saint-Venant pour décrire un fluide à surface libre (océan). Son obtention s'appuie sur l'analyse des échelles spatiales, précisément l'hypothèse " eau peu profonde ". Nous justifions nos équations à partir du modèle primitif et montrons un résultat d'existence locale de solution. Puis nous proposons un schéma volumes finis et des simulations numériques. Nous étudions ensuite un problème hyperbolique de relaxation, inspiré de la théorie cinétique des gaz. Nous construisons un schéma numérique via une stratégie préservant l'asymptotique : nous montrons sa convergence pour toute valeur du paramètre de relaxation, ainsi que sa consistance avec le problème à l'équilibre local. Des estimations d'erreurs sont établies et des simulations numériques sont présentées. Enfin, nous étudions un problème d'écoulement sanguin dans une artère avec stent, modélisé par un système de Stokes dans un domaine contenant une petite rugosité périodique (géométrie double échelle). Pour éviter une discrétisation coûteuse du domaine rugueux (l'artère stentée), nous formulons un ansatz de développement de la solution type Chapman-Enskog, et obtenons une loi de paroi implicite sur le bord du domaine lisse (artère seule). Nous montrons des estimations d'erreurs et des simulations numériques
|
3 |
Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles / Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equationsRambaud, Amélie 05 December 2011 (has links)
Nous étudions plusieurs aspects d'équations aux dérivées partielles multi-échelles. Pour trois exemples, la présence de multiples échelles, spatiales ou temporelles, motive un travail de modélisation mathématique ou constitue un enjeu de discrétisation. La première partie est consacrée à la construction et l'étude d'un système multicouche de type Saint-Venant pour décrire un fluide à surface libre (océan). Son obtention s'appuie sur l'analyse des échelles spatiales, précisément l'hypothèse « eau peu profonde ». Nous justifions nos équations à partir du modèle primitif et montrons un résultat d'existence locale de solution. Puis nous proposons un schéma volumes finis et des simulations numériques. Nous étudions ensuite un problème hyperbolique de relaxation, inspiré de la théorie cinétique des gaz. Nous construisons un schéma numérique via une stratégie préservant l'asymptotique : nous montrons sa convergence pour toute valeur du paramètre de relaxation, ainsi que sa consistance avec le problème à l'équilibre local. Des estimations d'erreurs sont établies et des simulations numériques sont présentées. Enfin, nous étudions un problème d'écoulement sanguin dans une artère avec stent, modélisé par un système de Stokes dans un domaine contenant une petite rugosité périodique (géométrie double échelle). Pour éviter une discrétisation coûteuse du domaine rugueux (l'artère stentée), nous formulons un ansatz de développement de la solution type Chapman-Enskog, et obtenons une loi de paroi implicite sur le bord du domaine lisse (artère seule). Nous montrons des estimations d'erreurs et des simulations numériques / This work is concerned with different aspects of multiscale partial differential equations. For three problems, we address questions of modelling and discretization thanks to the observation of the multiplicity of scales, time or space. We propose in the first part a model of approximation of a fluid with a free surface (ocean). The derivation of our multilayer shallow water type model is based on the analysis of the different space scales generally observed in geophysical flows, precisely the 'shallow water' assumption. We obtain an existence and uniqueness result of local in time solution and propose a finite volume scheme and numerical simulations. Next we study a hyperbolic relaxation problem, motivated by the kinetic theory of gaz. Adopting an Asymptotic Preserving strategy of discretization, we build and analyze a numerical scheme. The convergence is proved for any value of the relaxation parameter, as well as the consistency with the equilibrium problem, thanks to error estimates. We present some numerical simulations. The last part deals with a blood flow model in a stented artery. We consider a Stokes problem in a multiscale space domain, that is a macroscopic box (the artery) containing a microscopic roughness (the stent). To avoid expensive simulations when discretizing the whole rough domain, we perform a Chapman-Enskog type expansion of the solution and derive an implicit wall law on the boundary of the smooth domain. Error estimates are shown and numerical simulations are presented
|
4 |
Méthodes numériques pour des systèmes hyperboliques avec terme source provenant de physiques complexes autour du rayonnementSarazin Desbois, Céline 12 March 2013 (has links) (PDF)
Ce manuscrit est dédié à l'approximation numérique de plusieurs modèles du transfert radiatif. Dans un premier temps, l'attention est portée sur le modèle cinétique d'ordonnées discrètes. Dans le but de coupler ce modèle avec d'autres phénomènes plus lents, il est nécessaire d'avoir des méthodes numériques performantes et précises sur des temps longs. À partir d'une double approximation polynomiale de la solution en temps et en espace, on développe un schéma de type GRP d'ordre élevé sans restriction sur le pas de temps pour un système hyperbolique linéaire sur des maillages non structurés. Ce schéma est ensuite étendu pour le modèle d'ordonnées discrètes. Dans un second temps, on s'intéresse à des modèles aux moments issus du transfert radiatif. En effet, dans certaines applications, les modèles aux moments de type M1 conservent de nombreuses propriétés de l'ETR et fournissent une approximation suffisante de la solution. Après avoir résolu le problème de Riemann associé au modèle M1 gris, on considère l'approximation numérique du modèle M1 multigroupe. Une attention particulière est portée sur le calcul des moyennes d'opacités et des lois de fermeture. Un algorithme de précalculs est alors mis en place. La dernière application traitée dans ce mémoire porte sur une extension du transfert radiatif pour estimer des doses de radiothérapie. À la différence du M1 gris usuel, les flux dépendent ici de fonctions peu régulières en espace. Grâce à des changements de variables, un schéma HLL rétrograde est développé. De nombreux exemples numériques illustrent l'intérêt des schémas obtenus dans cette étude.
|
5 |
Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées.Crestetto, Anaïs 04 October 2012 (has links) (PDF)
Cette thèse propose différentes méthodes numériques permettant de simuler le comportement des plasmas ou des faisceaux de particules chargées à coût réduit. Le mouvement de particules chargées soumises à un champ électromagnétique est régi par l'équation de Vlasov. Celle-ci est couplée aux équations de Maxwell pour le champ électromagnétique ou à l'équation de Poisson dans un cas simplifié. Plusieurs types de modèles existent pour résoudre ce système. Dans les modèles cinétiques, les particules sont représentées par une fonction de distribution f(x,v,t) qui vérifie l'équation de Vlasov. Dans le cas général tridimensionnel (3D), le système fait apparaître 7 variables. Les calculs sur ordinateur deviennent rapidement très lourds. Les modèles fluides de plasma s'intéressent quant à eux à des quantités macroscopiques déduites de f par des intégrales en vitesse, telles que la densité, la vitesse moyenne et la température. Ces quantités ne dépendent que de la position x et du temps t. Le coût numérique est ainsi réduit, mais la précision s'en trouve altérée. Dans la première partie de cette thèse, une méthode multi-fluides est utilisée pour la résolution du système de Vlasov-Poisson 1D. Elle est basée sur la connaissance a priori de la forme prise par la fonction de distribution f. Deux possibilités sont étudiées : une somme de masse de Dirac et le modèle multi-water-bag. Ce type de méthodes est plutôt adapté aux systèmes restant proches de l'état d'équilibre. La deuxième partie propose de décomposer f en une partie d'équilibre et une perturbation. L'équilibre est résolu par une méthode fluide alors que la perturbation est résolue par une méthode cinétique. On construit notamment un schéma préservant l'asymptotique pour le système de Vlasov-Poisson-BGK, basé sur une telle décomposition. On étudie dans la troisième partie la méthode Particle-In-Cell (PIC) en géométrie 2D axisymétrique. Un travail basé sur l'analyse isogéométrique est présenté, ainsi qu'un code PIC - Galerkin Discontinu parallélisé sur carte graphique (GPU). Cette architecture permet de réduire de manière significative les temps de calculs.
|
6 |
Optimisation de méthodes numériques pour la physique des plasmas : application aux faisceaux de particules chargées / Optimisation of numerical methods for plasma physics : application to charged particle beamsCrestetto, Anaïs 04 October 2012 (has links)
Cette thèse propose différentes méthodes numériques pour simuler les plasmas ou les faisceaux de particules chargées à coût réduit. Le mouvement de particules chargées soumises à un champ électromagnétique est régi par l'équation de Vlasov, couplée aux équations de Maxwell ou de Poisson. Dans la première partie, une méthode multi-fluides est utilisée pour la résolution du système de Vlasov-Poisson 1D. Elle est basée sur la connaissance a priori de la forme prise par la fonction de distribution f. Ce type de méthodes est plutôt adapté aux systèmes restant proches de l'état d'équilibre. La deuxième partie propose de décomposer f en une partie d'équilibre et une perturbation. L'équilibre est résolu par une méthode fluide, la perturbation par une méthode cinétique plus précise. On construit un schéma préservant l'asymptotique pour le système de Vlasov-Poisson-BGK basé sur une telle décomposition. On étudie dans la troisième partie la méthode PIC en géométrie 2D axisymétrique. Un travail basé sur l'analyse isogéométrique est présenté ainsi qu'un code PIC - Galerkin Discontinu parallélisé sur carte graphique. / This thesis presents different numerical methods for the simulation of plasmas or charged particles beams with reduced cost. Movement of charged particles in an electromagnetic field is given by the Vlasov equation, coupled to the Maxwell equations for the electromagnetic field, or to the Poisson equation. In the first part, a multi-fluid method is used for solving the 1D Vlasov-Poisson system. It is based on the a priori knowledge of the shape of f. This kind of methods is rather adapted to systems staying close to the equilibrium. The second part presents the decomposition of f between an equilibrium part and a perturbation. The equilibrium part is solved by a fluid method whereas we use a kinetic method for the perturbation. We construct an asymptotic preserving scheme for the Vlasov-Poisson-BGK system using such a decomposition. The third part deals with the PIC method in 2D axisymmetric geometry. A work based on isogeometric analysis is presented, and then a PIC - Discontinuous Galerkin program computed on graphic card.
|
Page generated in 0.1195 seconds