Dans cette thèse nous avons utilisé les outils du calcul stochastique pour<br />obtenir l'existence et l'unicité de la solution d'un système d'équations aux<br />dérivées partielles non linéaire dont l'origine remonte à l'étude des modèles de particules collantes.<br />Premièrement, on construit deux diffusions dirigées par des browniens indépendants issues de points différents mais dont la dérive est la même fonction qui combine les deux densités de l'une et l'autre diffusions. On montre que le bonne combinaison de la densité et de la vitesse des particules est solution d'un système d'équations aux dérivées partielles appelé système de gaz sans pression avec viscosité.<br />Deuxièmement, On reprend la problématique d'un article de Sheu sur les densités de transition d'une diffusion non dégénéré, on aboutit à une meilleure précision sur les constantes apparaissant dans l'estimation de Sheu.<br />Finalement, on généralise le système de gaz sans pression déjà étudié par A. Dermoune en 2003, en remplaçant le laplacien par un opérateur plus générale. Alors on montre: l'existence d'une solution faible pour une équation différentielles stochastique non linéaire, identification de la dérive et l'unicité de la solution.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012025 |
Date | 29 November 2005 |
Creators | Filali, Siham |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds