Dans le contexte de la caractérisation des tissus mammaires, on peut se demander
ce que l’examen d’un attribut en échographie quantitative (« quantitative ultrasound » -
QUS) d’un milieu diffusant (tel un tissu biologique mou) pendant la propagation d’une onde de cisaillement ajoute à son pouvoir discriminant. Ce travail présente une étude du comportement variable temporel de trois paramètres statistiques (l’intensité moyenne, le paramètre de structure et le paramètre de regroupement des diffuseurs) d’un modèle général pour l’enveloppe écho de l’onde ultrasonore rétrodiffusée (c.-à-d., la K-distribution homodyne) sous la propagation des ondes de cisaillement.
Des ondes de cisaillement transitoires ont été générés en utilisant la mèthode d’ imagerie de cisaillement supersonique ( «supersonic shear imaging » - SSI) dans trois fantômes in-vitro macroscopiquement homogènes imitant le sein avec des propriétés mécaniques différentes, et deux fantômes ex-vivo hétérogénes avec tumeurs de souris incluses dans un milieu environnant d’agargélatine.
Une comparaison de l’étendue des trois paramètres de la K-distribution homodyne avec
et sans propagation d’ondes de cisaillement a montré que les paramètres étaient significativement (p < 0,001) affectès par la propagation d’ondes de cisaillement dans les expériences in-vitro et ex-vivo. Les résultats ont également démontré que la plage dynamique des paramétres statistiques au cours de la propagation des ondes de cisaillement peut aider à discriminer (avec p < 0,001) les trois fantômes homogènes in-vitro les uns des autres, ainsi que les tumeurs de souris de leur milieu environnant dans les fantômes hétérogénes ex-vivo. De plus, un modéle de régression linéaire a été appliqué pour corréler la plage de l’intensité moyenne sous la propagation des ondes de cisaillement avec l’amplitude maximale de déplacement du « speckle » ultrasonore. La régression linéaire obtenue a été significative : fantômes in vitro : R2 = 0.98, p < 0,001 ; tumeurs ex-vivo : R2 = 0,56, p = 0,013 ; milieu environnant ex-vivo : R2 = 0,59, p = 0,009. En revanche, la régression linéaire n’a pas été aussi significative entre l’intensité moyenne sans propagation d’ondes de cisaillement et les propriétés mécaniques du milieu : fantômes in vitro : R2 = 0,07, p = 0,328, tumeurs ex-vivo : R2 = 0,55, p = 0,022 ; milieu environnant ex-vivo : R2 = 0,45, p = 0,047.
Cette nouvelle approche peut fournir des informations supplémentaires à l’échographie quantitative statistique traditionnellement réalisée dans un cadre statique (c.-à-d., sans propagation d’ondes de cisaillement), par exemple, dans le contexte de l’imagerie ultrasonore en vue de la classification du cancer du sein. / In the context of breast tissue characterization, one may wonder what the consideration of a quantitative ultrasound (QUS) feature of a scattering medium (such as a soft biological tissue) under propagation of a shear wave adds to its discriminant power. This work presents a study of the time varying behavior of three statistical parameters (the mean intensity, the structure parameter and the clustering parameter of scatterers) of a general model for the ultrasound backscattering echo envelope (i.e., the homodyned K-distribution) under shear wave propagation.
Transient shear waves were generated using the supersonic shear imaging (SSI) method in three in-vitro macroscopically homogenous breast mimicking phantoms with different mechanical properties, and two ex-vivo heterogeneous phantoms with mice tumors included in an agar gelatin surrounding medium. A comparison of the range of the three homodyned K-distribution parameters with and without shear wave propagation showed that the parameters were significantly (p < 0.001) affected by shear wave propagation in the in-vitro and ex-vivo experiments.
The results also demonstrated that the dynamic range of the statistical parameters during shear wave propagation may help discriminate (with p < 0.001) the three in-vitro homogenous phantoms from each other, and also the mice tumors from their surrounding medium in the ex-vivo heterogeneous phantoms. Furthermore, a linear regression model was applied to relate the range of the mean intensity under shear wave propagation with the maximum displacement amplitude of speckle. The linear regression was found to be significant : in-vitro phantoms : R2 = 0.98, p < 0.001 ; ex-vivo tumors : R2 = 0.56, p = 0.013 ; ex-vivo surrounding medium : R2 = 0.59, p = 0.009. In contrast, the linear regression was not as significant between the mean intensity without
shear wave propagation and mechanical properties of the medium : in-vitro phantoms : R2 = 0.07, p = 0.328, ex-vivo tumors : R2 =0.55, p = 0.022 ; ex-vivo surrounding medium : R2 = 0.45, p = 0.047.
This novel approach may provide additional information to statistical QUS traditionally performed in a static framework (i.e., without shear wave propagation), for instance, in the context of ultrasound imaging for breast cancer classification.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11770 |
Date | 04 1900 |
Creators | Alavi Dorcheh, Marzieh |
Contributors | Cloutier, Guy |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0026 seconds