Return to search

Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes / Contributions to numerical modeling of the kinetic theory of suspensions.

Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre. / This work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used.

Identiferoai:union.ndltd.org:theses.fr/2011GRENI067
Date30 November 2011
CreatorsMaitrejean, Guillaume
ContributorsGrenoble, Ammar, Amine, Chinesta, Francisco
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds