Return to search

Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique

Cette thèse apporte différentes contributions à la résolution de problèmes de grande dimension dans le domaine du calcul scientifique, en particulier pour la quantification d'incertitudes. On considère ici des problèmes variationnels formulés dans des espaces produit tensoriel. On propose tout d'abord une stratégie de préconditionnement efficace pour la résolution de systèmes linéaires par des méthodes itératives utilisant des approximations de tenseurs de faible rang. Le préconditionneur est recherché comme une approximation de faible rang de l'inverse. Un algorithme glouton permet le calcul de cette approximation en imposant éventuellement des propriétés de symétrie ou un caractère creux. Ce préconditionneur est validé sur des problèmes linéaires symétriques ou non symétriques. Des contributions sont également apportées dans le cadre des méthodes d'approximation directes de tenseurs qui consistent à rechercher la meilleure approximation de la solution d'une équation dans un ensemble de tenseurs de faibles rangs. Ces méthodes, parfois appelées "Proper Generalized Decomposition" (PGD), définissent l'optimalité au sens de normes adaptées permettant le calcul a priori de cette approximation. On propose en particulier une extension des algorithmes gloutons classiquement utilisés pour la construction d'approximations dans les ensembles de tenseurs de Tucker ou hiérarchiques de Tucker. Ceci passe par la construction de corrections successives de rang un et de stratégies de mise à jour dans ces ensembles de tenseurs. L'algorithme proposé peut être interprété comme une méthode de construction d'une suite croissante d'espaces réduits dans lesquels on recherche une projection, éventuellement approchée, de la solution. L'application à des problèmes symétriques et non symétriques montre l'efficacité de cet algorithme. Le préconditionneur proposé est appliqué également dans ce contexte et permet de définir une meilleure norme pour l'approximation de la solution. On propose finalement une application de ces méthodes dans le cadre de l'homogénéisation numérique de matériaux hétérogènes dont la géométrie est extraite d'images. On présente tout d'abord des traitements particuliers de la géométrie ainsi que des conditions aux limites pour mettre le problème sous une forme adaptée à l'utilisation des méthodes d'approximation de tenseurs. Une démarche d'approximation adaptative basée sur un estimateur d'erreur a posteriori est utilisée afin de garantir une précision donnée sur les quantités d'intérêt que sont les propriétés effectives. La méthodologie est en premier lieu développée pour l'estimation de propriétés thermiques du matériau, puis est étendue à l'élasticité linéaire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00861986
Date27 November 2012
CreatorsGiraldi, Loïc
PublisherEcole centrale de nantes - ECN
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds