La thérapie génique, appelée aussi génothérapie, est une stratégie thérapeutique utilisable en principe pour traiter de nombreuses maladies génétiques. Une variation récente de cette approche thérapeutique utilise le système bactérien CRISPR/Cas9 (The Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)) pour modifier les gènes défectueux des patients atteints d'une maladie héréditaire. Ce système a déjà démontré sa grande capacité à modifier l'ADN chromosomique in vitro ainsi que in vivo mais le problème majeur réside au niveau de la livraison des composantes du système CRISPR, soit la Cas9 et un ARN guide (ARNg). Malgré l'existence de plusieurs vecteurs de livraison viraux ou non viraux, les Adeno-associated virus (AAV) sont les virus les plus utilisés pour livrer des gènes thérapeutiques aux cellules in vitro et aux animaux et aux humains in vivo. Malheureusement, cet outil de livraison commence à démontrer ses limites à cause de sa capacité d'empaquetage très limitée (environ 4.8 kb) par rapport à d'autres outils de livraison et à cause de son immunogénicité. Ces limitations nous amènent à développer une nouvelle approche qui pourrait être plus puissante et beaucoup moins immunogène soit l'utilisation des vésicules extracellulaires produites par toutes les cellules de l'organisme et qui constituent un outil de communication cellulaire. Les travaux de ce mémoire démontrent qu'il est possible d'introduire la protéine Cas9 et plus spécifiquement la Cas9 du Streptococcus pyogène (SpCas9) dans les vésicules extracellulaires. L'utilisation de ces vésicules nous a permis de livrer la SpCas9 à des cellules in vitro et d'induire une édition génique. / Gene therapy, also called genotherapy, is a therapeutic strategy used to treat many genetic diseases. A recent variation of this technology uses the bacterial CRISPR/Cas9 system, The Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to modify the defective genes of affected patients. This system has already demonstrated its great capacity to modify chromosomal DNA in vitro as well as in vivo, but the major problem lies in the delivery of the CRISPR components (i.e., the Cas9 gene or protein and its guide RNA (gRNA)). Despite the existence of several viral and non-viral delivery vectors, Adeno-associated viruses (AAV) are the most used vector to deliver therapeutic genes to cells in vitro and to animals and humans in vivo. Unfortunately, this delivery vector is starting to demonstrate its limitations due to its very limited packaging capacity (about 4.8 kb) compared to other delivery vectors and due also to its immunogenicity. These limitations lead us to develop a new approach that could be more powerful and much less immunogenic such as extracellular vesicles, which are produced by all cell types in the body, and which constitute an inter-cellular communication tool. Our work demonstrates that we are able to introduce the Cas9 protein, more specifically the Streptococcus pyogene Cas9 (SpCas9) into extracellular vesicles. These vesicles allowed us to deliver the SpCas9 to cells in vitro and to induce genetic editing.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70825 |
Date | 10 February 2024 |
Creators | Aloui, Malek |
Contributors | Tremblay, Jacques-P. |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xii, 67 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0022 seconds