Mycobacterium tuberculosis atteint le tiers de la population mondiale et cause plus de 1.5 millions de décès chaque année. L’augmentation des infections chez les patients immuno-compromis et l’émergence d’infections à de nouvelles souches multirésistantes aux antibiotiques somme la communauté scientifique à la découverte de nouvelles cibles thérapeutiques ainsi qu’au développement de nouveaux antibiotiques, vaccins et thérapies. Parmi les ~ 4000 gènes du génome de Mycobacterium tuberculosis, un d’entre eux, glbN, code pour l’hémoglobine tronquée N. Les hémoglobines sont de petites métalloprotéines qui fixent réversiblement l’oxygène et qui effectuent plusieurs activités catalytiques importantes. Ainsi, nos recherches s’inscrivent dans le cadre d’une approche biochimique qui vise à définir une fonction pour l’hémoglobine tronquée N de Mycobacterium tuberculosis à l’aide de techniques biochimiques modernes et de la spectroscopie à flux-arrêté. Nos recherches nous amènent également à résoudre la structure tridimensionnelle du complexe oxygéné de trHbN, à caractériser les interactions protéines-ligands au site actif de l’hémoglobine et à définir leurs rôles dans l’établissement du potentiel fonctionnel de l’enzyme en utilisant les spectroscopies d’absorption, de résonance Raman et de diffraction des rayons X. Nous avons découvert que l’activité rapide et efficace de détoxication aérobie du •NO de l’hémoglobine tronquée N mesurée chez Mycobacterium bovis BCG pourrait remplir un rôle similaire chez Mycobacterium tuberculosis et permettre la persistance de l’infection tuberculeuse dans l’hôte par la prévention des effets cytotoxiques associés au •NO et à ses dérivés réactifs azotés. De plus, l’architecture et la polarité du site actif de l’hémoglobine tronquée N définissent le potentiel fonctionnel de la protéine et contrôlent la diffusion, la fixation, la stabilisation, l’activation des ligands coordonnées au fer de l’hème et assurent le maintien d’une activité catalytique rapide et efficace. Finalement, nos découvertes suggèrent que l’hémoglobine tronquée N pourrait constituer une nouvelle cible thérapeutique pour le développement éventuel de drogues inhibitrices qui inactiveraient la première ligne de défense du parasite et perturberaient son adaptation métabolique face aux stress oxydatifs. / Mycobacterium tuberculosis infects over one-third of the human population, causing 1.5 millions deaths each year. The increase incidence of infections among immunocompromised patients and the emergence of strains with resistance to multiple antibiotics urge the scientific community to discover new therapeutic targets as well as develop new antibiotics, vaccines and therapies. Among the ~ 4000 genes that compose the genome of Mycobacterium tuberculosis, one of them, glbN, encodes the truncated hemoglobin N. Hemoglobins are small metalloproteins that reversibly bind oxygen and perform a wide array of important catalytic activities. Thus, our research aims at defining a function for Mycobacterium tuberculosis truncated hemoglobin N using modern biochemical techniques and stopped-flow spectroscopy. Our research also leads us to solve the three-dimensional structure of the oxygenated complex of trHbN, characterize the proteins-ligands interactions within the active site of the hemoglobin and define their roles in establishing the functional potential of the enzyme using absorption, resonance Raman and x-rays diffraction spectroscopies. We discovered that the fast and efficient •NO detoxification activity of truncated hemoglobin N measured in Mycobacterium bovis BCG could fulfill a similar role in Mycobacterium tuberculosis and allow the persistence of the tuberculous infection in the host by preventing the cytotoxic effects associated with •NO and its reactive nitrogen derivatives. Moreover, the architecture and polarity of truncated hemoglobin N active site define the functional potential of the protein and control the diffusion, binding, stabilization, and activation of the heme-iron coordinated ligands and ensure the maintenance of a fast and efficient catalytic activity. Finally, our discoveries suggest that truncated hemoglobin N could constitute a new therapeutic target for the development of inhibitors that would inactivate the first line of defence of the parasite and disturb its metabolic adaptation to nitrosative stresses.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/21346 |
Date | 16 April 2018 |
Creators | Hébert Ouellet, Yannick |
Contributors | Guertin, Michel |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 247 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0025 seconds