Return to search

Modélisation du couplage conduction/rayonnement dans les systèmes de protection thermique soumis à de très hauts niveaux de températures / Coupled radiative/conductive heat transfer modeling in thermal protection systems at high temperature

Les travaux présentés dans cette thèse CIFRE financée par AIRBUS Defence & Space s’intègrent dans une problématique de développement de nouveaux Systèmes de Protection Thermique (TPS) pour l’entrée atmosphérique. Ils se focalisent sur l’étude du transfert radiatif dans la zone d’ablation du TPS et son couplage avec le transfert conductif au travers de la matrice fibreuse de faible densité. Pour réaliser cette étude, il a été nécessaire d’évaluer les propriétés thermiques de ces matériaux, notamment les propriétés radiatives qui, contrairement aux conductivités thermiques, demeurent mal connues. La première étape de cette étude a donc visé à caractériser les propriétés optiques et radiatives de certains matériaux fournis par AIRBUS Defence & Space et par le CREE Saint-Gobain. Pour réaliser ces caractérisations, nous avons développé une méthode originale d’identification des propriétés radiatives basée sur des mesures de l’émission propre. Les spectres d’émission à haute température, réalisés sur des échantillons en fibre de silice ou en feutre de carbone nécessaires à l’identification, sont obtenus sur un banc de spectrométrie FTIR développé lors de ces travaux. Les échantillons sont chauffés à haute température à l’aide d’un laser CO2 et un montage optique permet de choisir entre la mesure du flux émis par l’échantillon ou un corps noir servant à l’étalonnage du banc. L’identification des propriétés repose sur la modélisation des facteurs de distribution du rayonnement calculés à l’aide d’une méthode de lancé de rayons Monte Carlo utilisant la théorie de Mie pour un cylindre infini pour le calcul des propriétés radiatives. Les températures identifiées sont comparées aux températures mesurées par pyrométrie au point de Christiansen dans le cas de la silice et montrent un bon accord avec ces dernières. Enfin la dernière partie de ce document est consacrée au couplage conduction-rayonnement dans ce type de milieu. Les échantillons ayant une très forte extinction, le modèle utilisé repose sur la définition d’une conductivité équivalente de Rosseland pour traiter les transferts radiatifs volumiques et ainsi simuler les champs de température au sein des échantillons dans les conditions de chauffage utilisées lors de l’identification. Dans le cas de la silice, cependant, les températures prédites par le modèle utilisant la conductivité équivalente de Rosseland, sont nettement supérieures à celles obtenues par identification ou par pyrométrie au point de Christiansen. Le fait que la conductivité équivalente de Rosseland ne fasse pas la distinction entre une forte extinction due à la diffusion ou à l’absorption est probablement la cause de cette différence. / The work presented in this thesis has been financed by AIRBUS Defence and Space. It is part of the development strategy of new Thermal Protection Systems (TPS) for atmospheric reentry purposes. The aim is to study the radiative transfer in the ablation zone of the TPS as well as the coupling of the radiative and conductive heat transfer in the low density fibrous matrix. To this end, radiative properties of the materials have to be evaluated since they are not well known. The first step of this study is therefore to characterize the optical and radiative properties of sample provided by AIRBUS Defence and Space and the CREE Stain-Gobain laboratory. Thus, an original identification method based on radiative emission measurement was developed to obtain the radiative properties. The needed emission spectra are measured on silica or carbon samples at high temperature with an experimental setup based on Fourrier Transformed InfraRed spectrometry. The samples are heated using a CO2 laser. An optical setup allows us to measure emission spectra on the sample or a black body used to calibrate the experiment. The identification process is based on the modeling of the radiative distribution factor computed by a Monte Carlo ray-tracing method. It uses Mie theory for infinite cylinder to compute the radiative properties. Temperature are also identified and, for silica, compared to the one measured by a Christiansen pyrometry technique. The last part of this study focuses on the coupled radiative/conductive heat transfer modeling in low density fibrous media. Samples being greatly absorbing, we used the Rosseland equivalent conductivity to model the radiative transfer in volume and obtain the thermal response of the samples in the conditions of the experimental setup used for the identification. For silica, predicted temperatures are superior to the identified ones or those measured with the Christiansen pyrometry technique. This is probably because the Rosseland equivalent conductivity makes no difference between extinction due to absorption and extinction due to scattering.

Identiferoai:union.ndltd.org:theses.fr/2014ISAL0079
Date11 September 2014
CreatorsLe Foll, Sébastien
ContributorsLyon, INSA, André, Frédéric, Delmas, Agnès
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds