Return to search

Protein complexes in neurodegenerative diseases

The 14-3-3 family of proteins are important signalling proteins involved in a number of cellular processes. These include cell cycle regulation, apoptosis, signal transduction and cell signalling. There is also considerable evidence in the literature that 14-3-3 proteins play a vital role in the pathology of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s and Prion disease. The neurodegenerative disease of focus in this research is Spinocerebellar Ataxia Type 1 (SCA1). SCA1 is a polyglutamine-repeat disease and the interaction of the disease protein ataxin-1 with 14-3-3 proteins leads to the toxic accumulation and subsequent protein aggregation which is characteristic of this disease. This study focused on attempting to elucidate the structure of various domains of the disease protein and also in identifying potential inhibitors of this deleterious interaction. Unfortunately, structural studies were not successful due to a number of caveats encountered in the expression and purification of the ataxin-1 protein domains. By utilising computational methods and small molecule inhibitors, a number of potential lead compounds which possess the ability to at least partly disrupt the interaction of 14- 3-3ζ have been identified. As 14-3-3 proteins play roles in other neurodegenerative diseases, successful identification of potential drug lead treatments can have far reaching benefits in a number of neurodegenerative diseases including SCA1. Lipid rafts are also involved in neurodegenerative disease pathology. Lipid rafts are cholesterol and sphingolipid rich domains which organise the plasma membrane into discrete microdomains and act as signalling platforms and processing centres which attach specific proteins and lipids. A number of disease proteins are processed at these membrane regions, including those involved in Alzheimer’s, Parkinson’s and Prion disease. This processing is a step which is critical in the pathology of disease and abnormal processing leads to the formation of toxic protein aggregates. Previous research in the lab identified the association of low levels of the five main brain isoforms of 14-3-3 proteins with rafts. This study expanded on this to positively identify the presence of the two phospho-forms of 14-3-3, α and δ. The mechanism by which 14-3-3 proteins associate with rafts was also investigated, indicating that 14-3-3 associates with rafts via an unidentified raftbound protein(s). In addition, the phosphorylation status and quaternary structure of 14-3-3 in the presence of sphingolipids has been explored.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:578392
Date January 2012
CreatorsHouston, Nicola Patricia
ContributorsAitken, Alastair; Sawyer, Lindsay
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/7738

Page generated in 0.0026 seconds