Compliant mechanism theory permits a procedure called rigidbody replacement, in which two or more rigid links of the mechanism are replaced by a compliant flexure with equivalent motion. Methods for designing flexure with equivalent motion to replace rigid links are detailed in Pseudo-Rigid-Body Models (PRBMs). Such models have previously been developed for planar mechanisms. This thesis develops the first PRBM for spherical mechanisms. In formulating this PRBM for a spherical mechanism, we begin by applying displacements are applied to a curved beam that cause it todeflect in a manner consistent with spherical kinematics. The motion of the beam is calculated using Finite Element Analysis. These results areanalyzed to give the PRBM parameters. These PRBM parameters vary with the arc length and the aspect ratio of the curved beam.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-3571 |
Date | 01 June 2006 |
Creators | Jagirdar, Saurabh |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.067 seconds