L'étude théorique de la transition vers la turbulence d'écoulements en tuyau de fluides non newtoniens rhéofluidifiants (fluides de Carreau) est menée, avec l'approche consistant à calculer des «~structures très cohérentes~» sous la forme d'«~ondes non linéaires~». Pour cela un code pseudo-spectral de type Petrov-Galerkin, permettant de suivre des solutions ondes non linéaires tridimensionnelles dans l'espace des paramètres par continuation, est développé. Ce code est validé par comparaison à des résultats existants en fluide newtonien, et grâce à un test de consistance en fluide non newtonien. Une convergence spectrale exponentielle est obtenue dans tous les cas. Ce code est utilisé pour chercher (guidé par des résultats expérimentaux récents) de nouvelles solutions de nombre d'onde azimutal fondamental égal à 1, sans succès pour l'instant. Par contre des solutions de nombre d'onde azimutal fondamental égal à 2 ou 3 sont obtenues par continuation à partir du cas newtonien. La rhéofluidification induit, en termes de nombres de Reynolds critiques, un retard à l'apparition de ces ondes par rapport au cas newtonien. Ce retard est caractérisé, et le parallèle est fait avec divers résultats expérimentaux qui montrent un retard à l'apparition de bouffées turbulentes en fluides non newtoniens / The transition to turbulence in pipe flows of shear-thinning fluids is studied theoretically. The method used is the computation of `exact coherent structures' that are tridimensional nonlinear waves. For this purpose a pseudo-spectral Petrov-Galerkin code is developped, which also allows to follow solution branches in the parameter space with continuation methods. This code is validated by recovering already published results in the Newtonian case, and by a consistency test in the non-Newtonian case. A spectral exponential convergence is obtained in all cases. This code is used to seek (guided by recent experimental results) new solutions of fundamental azimuthal wavenumber equal to 1,without success at the time being. On the contrary solutions with a fundamental azimuthal wavenumber equal to 2 and 3 are obtained by continuation from the Newtonian case. The shear-thinning effects induce, in terms of critical Reynolds numbers, a delay for the onset of these waves, as compared with the Newtonian case. This delay is characterized. An analogy is made with various experimental results that show a delay in the transition to turbulence, more precisely, in the onset of `puffs', in non-Newtonian fluids
Identifer | oai:union.ndltd.org:theses.fr/2010INPL037N |
Date | 10 September 2010 |
Creators | Roland, Nicolas |
Contributors | Vandoeuvre-les-Nancy, INPL, Nouar, Chérif, Plaut, Emmanuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds