L'approximation dite " anélastique " permet de filtrer les ondes acoustiques grâce à un développement asymptotique deséquations de Navier-Stokes, réduisant ainsi le pas en temps moyen, lors de la simulation numérique du développement d'instabilités hydrodynamiques. Ainsi, les équations anélastiques sont établies pour un mélange de deux fluides pour l'instabilité de Rayleigh-Taylor. La stabilité linéaire de l'écoulement est étudiée pour la première fois pour des fluides parfaits, par la méthode des modes normaux, dans le cadre de l'approximation anélastique. Le problème de Stokes issu des équations de Navier-Stokes sans les termes non linéaires (une partie de la poussée d'Archiméde est prise en compte) est défini ; l'éllipticité est démontrée, l'étude des modes propres et l'invariance liée à la pression sont détaillés. La méthode d'Uzawa est étendue à l'anélastique en mettant en évidence le découplage des vitesses en 3D, le cas particulier k = 0 et les modes parasites de pression. Le passage au multidomaine a permis d'établir les conditions de raccord (raccord Co de la pression sans condition aux limites physiques). Les algorithmes et l'implantation dans le code AMENOPHIS sont validés par les comparaisons de l'opérateur d'Uzawa développé en Fortran et à l'aide de Mathematica. De plus des résultats numériques ont été comparés à une expérience avec des fluides incompressibles. Finalement, une étude des solutions numériques obtenues avec les options anélastique et compressible a été menée. L'étude de l'influence de la stratification initiale des deux fluides sur le développement de l'instabilité de Rayleigh-Taylor est amorcée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00714149 |
Date | 30 May 2012 |
Creators | Hammouch, Zohra |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds