Return to search

Ultrafast Charge Transfer in Donor-Acceptor Push-Pull Constructs

Ultrafast charge and electron transfer, primary events in artificial photosynthesis, are key in solar energy harvesting. This dissertation provides insight into photo-induced charge and electron transfer in the donor and acceptor constructs built using a range of donor and acceptor entities, including transition metal dichalcogenides (TMDs, molybdenum disulfide (MoS2), and tungsten disulfide (WS2)), N-doped graphene, diketopyrrolopyrrol (DPP), boron-dipyrromethene (BODIPY), benzothiadiazole (BTD), free base and metal porphyrins, zinc phthalocyanine (ZnPc), phenothiazine (PTZ), triphenylamine (TPA), ferrocene (Fc), fullerene (C60), tetracyanobutadiene (TCBD), and dicyanoquinodimethane (DCNQ). The carefully built geometries and configurations of the donor and (D), acceptor (A), with a spacer in these constructs promote intramolecular charge transfer, and intervalence charge transfer to enhance charge and electron transfer efficiencies. Steady-state UV-visible absorption spectroscopy, fluorescence and phosphorescence spectroscopies, electrochemistry (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)), spectroelectrochemistry (absorption spectroscopy under controlled potential electrolysis), transient absorption spectroscopy, and quantum mechanical calculations (density functional theory, DFT) are used to probe ground and the excited state events as well as excited state charge separation resulting in cation and anion species. The current findings are useful for the increased reliance on renewable energy resources, especially solar energy.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1986988
Date08 1900
CreatorsJang, Young Woo
ContributorsD'Souza, Francis, Wang, Hong, Acree, William, Valsson, Omar, Sherman, Benjamin
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Jang, Young Woo, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0023 seconds