Return to search

Mathematical modelling of particle transport and deposition in the acinar region of the lung

The context of this thesis is the modelling of particle deposition in the human lung in order to optimise the administration of inhaled drugs. As the alveolar region plays a crucial role both physiologically and functionally, especially for systemic delivery, the objective of this work is to set-up a particle deposition model specific to the acinar region which could be integrated in whole lung deposition model. The first two chapters concentrate on the anatomical and functional aspects of the lung and on the physical principles involved in the flow and particle transport mechanisms in the lung. Then a computational fluid dynamics model was setup in a simplified alveolar geometry. Aerosol bolus transport was studied through an Eulerian approach, for one or several breathing cycles. The impact of flow irreversibilities on bolus dispersion was quantified. The last chapter deals with the integration of the previous results in an analytical model of particle deposition in the whole lung. The results generated by this model are then compared to experimental data from the literature or obtained from an ongoing clinical trial. The results of the new theoretical model show an increase of particle deposition in the acinar region which improves correlation of theory with experimental data. This model could favourably help designing therapies targeting the alveolar region of the lung

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00674565
Date01 March 2011
CreatorsMuller, Pierre-Antoine
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds