The ionization of chemicals in solids or liquids under ambient conditions, known as ambient ionization mass spectrometry, is currently a fruitful research area in mass spectrometry. To classify those ambient ionization techniques from preexisting atmospheric pressure ionization methods, the former are commonly defined as those mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment. A characteristic of this technology is that sample introduction and ionization are usually separate events, thereby allowing independent control of each set of conditions.
A two-step ESI-based technique, named electrospray laser desorption ionization (ELDI), has been developed to characterize nonvolatile analyte molecules directly from the surfaces of solid samples in 2005 by J. Shiea and his co-workers. The analyte molecules are produced by laser irradiating of the sample surfaces, and then post-ionized in an ESI plume. However, the pulsed laser used in ELDI-MS system is quite expensive. Our aim in this research is to develop simple, convenient, and cheap desorption methods and coupled them to post-ionization techniques for direct analysis of liquid and solid sample analysis. They includes: (a) the use of continuous wave (CW) laser instead of pulsed laser to desorb analytes in liquid samples and ointments, and (b) the use of thermal probe to desorb analytes in solid and liquid samples. All of the desorbed neutral species like molecules or droplets are then post-ionized via ESI or APCI processes.
The first topic of the research is to develop a cheaper laser system to introduce analytes in solids or liquids into reaction region for post-ionization. In this section, we use a CW laser instead of a pulsed laser for the sampling of analytes. The titanium foil and stainless steel foil sample plate is quite useful and shows a great of desorption efficiency for liquid samples while irradiating by a CW laser. The detection limit by using a CW laser for sampling and ESI for post-ionization is 0.1 £gM for Benzethonium chloride and 1 £gM for cytochrome c, respectively. The combination of CW laser desorption and ESI post-ionization mass spectrometry can be applied in drug components, food safety and biomedical sample analysis. As a result of small size, lightness and lower prices of CW laser system, it not only shows large potential to use as a high efficiency desorption device for novel ionization source of mass spectrometer but also available for a wide range of useful application in many fields.
The second topic of the research is to develop a new thermal probe for the direct desorption of sample surface. The home-made thermal probe is used to touch surface of solid sample or liquid sample to generate gas phase molecules or micro analyte droplets. Those neutral analytes are then post-ionized via ESI or APCI processes. In this study, the setting temperature of thermal probe is 250¢J. When the thermal probe touches liquid sample, it makes droplets boiling away explosively and then fused with ESI plume to generate ions. The detection limit by using a thermal probe for sampling and ESI or APCI for post-ionization is 1 £gM for both melamine and cytochrome c. This technique is also applied to analyze controversial additives in drinks. It also shows large potential to use as a high efficiency desorption device for novel ionization source of mass spectrometer and useful for a wide range of useful application in many fields.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0726111-170405 |
Date | 26 July 2011 |
Creators | Lai, Jia-Hong |
Contributors | Maw-Rong Lee, Jentaie Shiea, Yi-Sheng Wang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0726111-170405 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0022 seconds