In this work, low dimensional iron group clusters have been studied by application of high magnetic fields. The magnetization has been probed with an MPMS as function of temperature and field. The combination with pulse field measurements up to 52\,T allowed determination of the magnetic exchange coupling parameters, and to probing the effective spin of the ground state. The main focus was on tunable high-field/high-frequency (tHF) ESR in static fields < 17 T and pulse field ESR up to 36 T. This magnetic resonance method has been used for the characterization of the local magnetic properties: The detailed analysis of the field dependence of dedicated spin states allowed to determine the magnetic anisotropy and g-factors. The results were analyzed in the framework of the appropriate effective spin Hamiltonians in terms of magnetization fits and ESR spectrum simulations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24034 |
Date | 06 December 2007 |
Creators | Golze, Christian |
Contributors | Büchner, B., Klauss, H.-H., Schnack, J. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds