Muitas são as características quantitativas que são, significativamente, influenciadas por fatores genéticos, em geral, existem vários genes que colaboram para a variação de uma ou mais características quantitativas. As informações ausentes a respeito dos genótipos nos marcadores moleculares é um problema comum em estudo de mapeamento genético e, por conseguinte, no mapeamento dos locus que controlam estas características fenotípicas (QTL). Os dados que não foram observados ocorrem, principalmente, devido a erros de genotipagem e de marcadores não informativos. Para solucionar este problema foi utilizado o método do modelo oculto de Markov para inferir estes dados. Os métodos de acurácias evidenciaram o sucesso da aplicação desta técnica de imputa- ção. Uma vez imputado, na inferência bayesiana estes dados não serão mais tratados como uma variável aleatória resultando assim, numa redução no espaço paramétrico do modelo. Outra grande dificuldade no mapeamento de QTL se deve ao fato de que não se conhece ao certo a quantidade destes que influenciam uma dada característica, fazendo com que surjam diversos problemas, um deles é a dimensão do espaço paramétrico e, consequentemente, a obtenção da amostra a posteriori. Assim, com o objetivo de contornar este problema foi proposta a utilização do método Monte Carlo via cadeia de Markov com Saltos Reversíveis, uma vez que este permite flutuar, entre cada iteração, modelos com diferentes quantidades de parâmetros. A utilização da abordagem bayesiana permitiu detectar cinco QTL para a característica estudada. Todas as análises foram implementadas no programa estatístico R. / There are many quantitative characteristics which are significantly influenced by genetic factors, in general, there are several genes that contribute to the variation of one or more quantitative trait. The missing information about the genotypes in molecular markers is a common problem in studying genetic mapping and therefore the mapping of loci that control these phenotypic traits (QTL). The data were not observed occur mainly due to errors in genotyping and uninformative markers. To solve this problem the method of occult Markov model to infer this information was used. Techniques accuracies demonstrated the successful application of this technique of imputation. Once allocated, in the Bayesian inference this data will no longer be treated as a random variable thus resulting in a reduction in the parameter space of the model. Another great difficulty in mapping QTL is due to the fact that no one knows exactly the amount of these which influence a given characteristic, so that several problems arise, one of them is dimension of the parameter space and, consequently, obtaining the sample a posterior. Thus, in order to solve this problem using the method via Monte Carlo Markov chain Reversible Jump was proposed, since this allows fluctuate between each iteration, models with different numbers of parameters. The use of the Bayesian approach allowed five QTL detected for the studied trait. All analyzes were implemented in the statistical software R.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03102014-141337 |
Date | 28 August 2014 |
Creators | Elias Silva de Medeiros |
Contributors | Roseli Aparecida Leandro, Cristian Marcelo Villegas Lobos, Júlio César Pereira |
Publisher | Universidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds