Return to search

Towards Reliable Computer Vision in Aviation: An Evaluation of Sensor Fusion and Quality Assessment

Research conducted in the aviation industry includes two major areas, increased safety and a reduction of the environmental footprint. This thesis investigates the possibilities of increased situational awareness with computer vision in avionics systems. Image fusion methods are evaluated with appropriate pre-processing of three image sensors, one in the visual spectrum and two in the infra-red spectrum. The sensor setup is chosen to cope with the different weather and operational conditions of an aircraft, with a focus on the final approach and landing phases. Extensive image quality assessment metrics derived from a systematic review is applied to provide a precise evaluation of the image quality of the fusion methods. A total of four image fusion methods are evaluated, where two are convolutional network-based, using the networks for feature extraction in the detailed layers. Other approaches with visual saliency maps and sparse representation are also evaluated. With methods implemented in MATLAB, results show that a conventional method implementing a rolling guidance filter for layer separation and visual saliency map provides the best results. The results are further confirmed with a subjective ranking test, where the image quality of the fusion methods is evaluated further.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-48597
Date January 2020
CreatorsBjörklund, Emil, Hjorth, Johan
PublisherMälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds