Return to search

Design and fabrication of multi-dimensional RF MEMS variable capacitors [electronic resource] / by Hariharasudhan T. Kannan.

Title from PDF of title page. / Document formatted into pages; contains 88 pages. / Thesis (M.S.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: In this work, a multi dimensional RF MEMS variable capacitor that utilizes electrostatic actuation is designed and fabricated on a 425um thick silicon substrate. Electrostatic actuation is preferred over other actuation mechanisms due to low power consumption. The RF MEMS variable capacitor is designed in a CPW topology, with multiple beams supported (1 - 7 beams) on a single pedestal. The varactors are fabricated using surface micromachining techniques. A 1um thick silicon monoxide (Er - 6) is used as a dielectric layer for the varactor. The movable membrane is suspended on a 2.5um thick electroplated gold pedestal. The capacitance between the membrane and the bottom electrode increases as the bias voltage between the membrane and the bottom electrode is increased, eventually causing the membrane to snap down at the actuation voltage. For the varactors designed herein, the actuation voltage is approximately 30 - 90V. / ABSTRACT: Full-wave electromagnetic simulations are performed from 1 - 25GHz to accurately predict the frequency response of the varactors. The EM simulations and the measurement results compare favorably. A series RLC equivalent circuit is used to model the varactor and used to extract the parasitics associated with the capacitor by optimizing the model with the measurement results. The measured capacitance ratio is approximately 12:1 with a tuning range from 0.5 - 6pF. Furthermore, the measured S-parameter data is used to extract the unloaded Q of the varactor (at 1GHz) and is found to be 234 in the up state and 27 in the down state. An improved anodic bonding technique to bond high resistivity Si substrate and low alkali borax glass substrate that finds potential application towards packaging of MEMS varactors is investigated. To facilitate the packaging of the varactors the temperature is maintained at 400°C. The bonding time is approximately 7min at an applied voltage of 1KV. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:USF/oai:palmm.fcla.edu:AJM5929SEB
Date January 2003
CreatorsKannan, Hariharasudhan T.
PublisherUniversity of South Florida
Source SetsUniversity of South Flordia
Detected LanguageEnglish

Page generated in 0.0055 seconds