L'évolution de Systems-on-Chip (SoCs) est rapide et le nombre des processeurs augmente conduisant à la transition des les plates-formes Multi-core vers les Manycore. Dans telles plates-formes, l'architecture d'interconnexion a également décalé des bus traditionnels vers les Réseaux sur puce (NoC) afin de faire face à la mise en échelle. Les NoC permettent aux processeurs d'échanger des informations avec la mémoire et les périphériques lors de l'exécution d'une tâche et d'effectuer plusieurs communications en parallèle. Les plates-formes basées sur un NoC sont aussi présentes dans des systèmes embarqués, caractérisés par des exigences comme la prédictibilité, la sécurité et la criticité mixte. Afin de fournir telles fonctionnalités dans les plates-formes commerciales existantes, il faut prendre en considération le NoC qui est un élément clé ayant un impact important sur les performances d'un SoC. Une tâche échange des informations à travers du NoC et par conséquent, son temps d'exécution dépend du temps de transmission des flux qu'elle génère. En calculant le temps de transmission de pire cas (WCTT) des flux dans le NoC, une étape est faite vers le calcul du temps d'exécution de pire cas (WCET) d'une tâche. Ceci contribue à la prédictibilité globale du système. De plus, en prenant en compte les politiques d'arbitrage dans le NoC, il est possible de fournir des garanties de sécurité contre des tâches compromises qui pourraient essayer de saturer les ressources du système (attaque DoS). Dans les systèmes critiques de sécurité, une distinction des tâches par rapport à leur niveau de criticité, permet aux tâches de criticité mixte de coexister et d'exécuter en harmonie. De plus, ça permet aux tâches critiques de maintenir leurs temps d'exécution au prix de tâches de faible criticité qui seront ralenties ou arrêtées. Cette thèse vise à fournir des méthodes et des mécanismes dans le but de contribuer aux axes de prédictibilité, de sécurité et de criticité mixte dans les architectures Manycore basées sur Noc. En outre, l'incitation consiste à relever conjointement les défis dans ces trois axes en tenant compte de leur impact mutuel. Chaque axe a été étudié individuellement, mais très peu de recherche prend en compte leur interdépendance. Cette fusion des aspects est de plus en plus intrinsèque dans des domaines tels que Internet-of-Things, Cyber-Physical Systems (CPS), véhicules connectés et autonomes qui gagnent de l'élan. La raison en est leur haut degré de connectivité qui crée une grande surface d'exposition ainsi que leur présence croissante qui rend l'impact des attaques sévère et visible. Les contributions de cette thèse consistent en une méthode pour fournir une prédictibilité aux flux dans le NoC, un mécanisme pour la sécurité du NoC et une boîte à outils pour la génération de trafic utilisée pour l'analyse comparative. La première contribution est une adaptation de l'approche de la trajectoire traditionnellement utilisée dans les réseaux avioniques (AFDX) pour calculer le WCET. Dans cette thèse, nous identifions les différences et les similitudes dans l'architecture NoC et modifions l'approche de la trajectoire afin de calculer le WCTT des flux NoC. La deuxième contribution est un mécanisme qui permet de détecter les attaques de DoS et d'atténuer leur impact dans un ensemble des flux de criticité mixte. Plus précisément, un mécanisme surveille le NoC et lors de la détection d'un comportement anormal, un deuxième mécanisme d'atténuation s'active. Ce dernier applique des limites de trafic à la source et restreint le taux auquel le NoC est occupé. Cela atténuera l'impact de l'attaque, garantissant la disponibilité des ressources pour les tâches de haute criticité. Finalement NTGEN, est un outil qui peut générer automatiquement des jeux des flux aléatoires mais qui provoquent une occupation NoC prédéterminée. Ces ensembles sont ensuite injectés dans le NoC et les informations sont collectées en fonction de la latence / The evolution of Systems-on-Chip (SoCs) is rapid and the number of processors has increased transitioning from Multi-core to Manycore platforms. In such platforms, the interconnect architecture has also shifted from traditional buses to Networks-on-Chip (NoC) in order to cope with scalability. NoCs allow the processors to exchange information with memory and peripherals during task execution and enable multiple communications in parallel. NoC-based platforms are also present in embedded systems, characterized by requirements like predictability, security and mixed-criticality. In order to enable such features in existing commercial platforms it is necessary to take into consideration the NoC which is a key element with an important impact to a SoC's performance. A task exchanges information through the NoC and as a result, its execution time depends on the transmission time of the flows it generates. By calculating the Worst Case Transmission Time (WCTT) of flows in the NoC, a step is made towards the calculation of the Worst Case Execution Time (WCET) of a task. This contributes to the overall predictability of the system. Similarly by leveraging arbitration and traffic policies in the NoC it is possible to provide security guarantees against compromised tasks that might try to saturate the system's resources (DoS attack). In safety critical systems, a distinction of tasks in relation to their criticality level, allows tasks of mixed criticality to co-exist and execute in harmony. In addtition, it allows critical tasks to maintain their execution times at the cost of tasks of lower criticality that will be either slowed down or stopped. This thesis aims to provide methods and mechanisms with the objective to contribute in the axes of predictability, security and mixed criticality in NoC-based Manycore architectures. In addition, the incentive is to jointly address the challenges in these three axes taking into account their mutual impact. Each axis has been researched individually, but very little research takes under consideration their interdependence. This fusion of aspects is becoming more and more intrinsic in fields like the Internet-of-Things, Cyber-Physical Systems (CPSs), connected and autonomous vehicles which are gaining momentum. The reason being their high degree of connectivity which is creates great exposure as well as their increasing presence which makes attacks severe and visible. The contributions of this thesis consist of a method to provide predictability to a set of flows in the NoC, a mechanism to provide security properties to the NoC and a toolkit for traffic generation used for benchmarking. The first contribution is an adaptation of the trajectory approach traditionally used in avionics networks (AFDX) to calculate WCET. In this thesis, we identify the differences and similarities in NoC architecture and modify the trajectory approach in order to calculate the WCTT of NoC flows. The second contribution is a mechanism that detects DoS attacks and mitigates their impact in a mixed criticality set of flows. More specifically, a monitor mechanism will detect abnormal behavior, and activate a mitigation mechanism. The latter, will apply traffic shaping at the source and restrict the rate at which the NoC is occupied. This will limit the impact of the attack, guaranteeing resource availability for high criticality tasks. Finally NTGEN, is a toolkit that can automatically generate random sets of flows that result to a predetermined NoC occupancy. These sets are then injected in the NoC and information is collected related to latency
Identifer | oai:union.ndltd.org:theses.fr/2017PESC1137 |
Date | 28 November 2017 |
Creators | Papastefanakis, Ermis |
Contributors | Paris Est, George, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds