Return to search

Abelianization and Floer homology of Lagrangians in clean intersection

This thesis is split up into two parts each revolving around Floer
homology and quantum cohomology of closed monotone symplectic
manifolds. In the first part we consider symplectic manifolds obtained
by symplectic reduction. Our main result is that a quantum version of
an abelianization formula of Martin holds, which relates
the quantum cohomologies of symplectic quotients by a group and by its
maximal torus. Also we show a quantum version of the Leray-Hirsch
theorem for Floer homology of Lagrangian intersections in the
quotient.

The second part is devoted to Floer homology of a pair of monotone
Lagrangian submanifolds in clean intersection. Under these assumptions
the symplectic action functional is degenerated. Nevertheless
Frauenfelder defines a version of Floer
homology, which is in a certain sense an infinite dimensional analogon
of Morse-Bott homology. Via natural filtrations on the chain level we
were able to define two spectral sequences which serve as a tool to
compute Floer homology. We show how these are used to obtain new
intersection results for simply connected Lagrangians in the product
of two complex projective spaces.

The link between both parts is that in the background the same
technical methods are applied; namely the theory of holomorphic strips
with boundary on Lagrangians in clean intersection. Since all our
constructions rely heavily on these methods we also give a detailed
account of this theory although in principle many results are not new
or require only straight forward generalizations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-223391
Date10 April 2017
CreatorsSchmäschke, Felix
ContributorsUniversität Leipzig, Fakultät für Mathematik und Informatik, Professor Dr. Matthias Schwarz, Professor Dr. Urs Frauenfelder, Professor Dr. Matthias Schwarz
PublisherUniversitätsbibliothek Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0025 seconds