<p>A large amount of today’s telecommunication consists of mobile and short distance wireless applications, where the effect of the channel is unknown and changing over time, and thus needs to be described statistically. Therefore the received signal can not be accurately predicted and has to be estimated. Since telecom systems are implemented in real-time, the hardware in the receiver for estimating the sent signal can for example be based on a DSP where the statistic calculations are performed. A fixed-point DSP with a limited number of bits and a fixed binary point causes larger quantization errors compared to floating point operations with higher accuracy.</p><p>The focus on this thesis has been to build a library of functions for handling fixed-point data. A class that can handle the most common arithmetic operations and a least squares solver for fixed-point have been implemented in MATLAB code.</p><p>The MATLAB Fixed-Point Toolbox could have been used to solve this task, but in order to have full control of the algorithms and the fixed-point handling an independent library was created.</p><p>The conclusion of the simulation made in this thesis is that the least squares result are depending more on the number of integer bits then the number of fractional bits.</p> / <p>En stor del av dagens telekommunikation består av mobila trådlösa kortdistanstillämpningar där kanalens påverkan är okänd och förändras över tid. Signalen måste därför beskrivas statistiskt, vilket gör att den inte kan bestämmas exakt, utan måste estimeras. Eftersom telekomsystem arbetar i realtid består hårdvaran i mottagaren av t.ex. en DSP där de statistiska beräkningarna görs. En fixtals DSP har ett bestämt antal bitar och fast binärpunkt, vilket introducerar ett större kvantiseringsbrus jämfört med flyttalsoperationer som har en större noggrannhet.</p><p>Tyngdpunkten på det här arbetet har varit att skapa ett bibliotek av funktioner för att hantera fixtal. En klass har skapats i MATLAB-kod som kan hantera de vanligaste aritmetiska operationerna och lösa minsta-kvadrat-problem.</p><p>MATLAB:s Fixed-Point Toolbox skulle kunna användas för att lösa den här uppgiften men för att ha full kontroll över algoritmerna och fixtalshanteringen behövs ett eget bibliotek av funktioner som är oberoende av MATLAB:s Fixed-Point Toolbox.</p><p>Slutsatsen av simuleringen gjord i detta examensarbete är att resultatet av minsta-kvadrat-metoden är mer beroende av antalet heltalsbitar än antalet binaler.</p> / fixtal, telekommunikation, DSP, MATLAB, Fixed-Point Toolbox, minsta-kvadrat-lösning, flyttal, Householder QR faktorisering, saturering, kvantiseringsbrus
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kau-4550 |
Date | January 2009 |
Creators | Grill, Andreas, Englund, Robin |
Publisher | Karlstad University, Faculty of Technology and Science, Karlstad University, Faculty of Technology and Science |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, text |
Page generated in 0.0017 seconds