Return to search

Validation, improvement and implementation of sorption mathematical models using a quartz crystal microbalance (QCM) / Validation, amélioration et implémentation de modèles mathématiques de sorption en utilisant une microbalance à quartz (QCM)

Ce travail de thèse a été réalisé, dans le cadre de la convention CIFRE 1538/2010, au sein d'adixen Vacuum Products (aVP) à Annecy (France). Il a été en partie financé par le projet S.P.A.M. (Surface Physics for Advanced Manufacturing). Il s'agit d'un projet ITN financé par le programme Pierre et Marie Curie de la Communauté Européenne rassemblant des partenaires universitaires et industriels dont aVP. L'objectif de ce programme était de contribuer à l'étude et au développement de la lithographie et en particulier la lithographie à ultraviolet extrême (EUVL). Ce travail porte sur la problématique de la contamination moléculaire dans l'industrie des semi-conducteurs ainsi que les besoins de maitrise de contamination pour la photolithographie EUVL. Pour ce faire, des modèles mathématiques de sorption ont été recherchés, testés et validés à l'aide d'une microbalance à quartz (QCM). Cette technique, possédant une très haute sensibilité (au niveau du ng), permet d'étudier les phénomènes de sorption relatifs à tout matériau déposable sur un cristal de quartz mis au contact de différents gaz dont la pression partielle est maitrisée. Par conséquent, le protocole détaillé dans cette thèse peut être utilisé pour d'autres types d'expériences dans toute discipline nécessitant une telle précision. Le déroulement de notre plan d'expérience comprend deux types de matériaux naturellement différents : un polymère (PCBA) d'une part et deux substrats métalliques (SS AISI 304 et CuC1) d'autre part pour lesquels le transfert de masse n'intervient pas de la même manière. Les gaz d'étude ont été sélectionnés pour leur intérêt dans l'industrie des semi-conducteurs (vapeur d'eau, HF). Le résultat de l'interaction des gaz d'étude avec les substrats ciblés est suivi en direct par la QCM, ce qui permet non seulement de valider et/ou améliorer les modèles mathématiques déjà disponibles dans la bibliographie mais aussi de les ajuster aux données obtenues expérimentalement. Nous pouvons ainsi non seulement prévoir le comportement des contaminants à l'équilibre (isothermes) et à l'état transitoire mais aussi réaliser des estimations de sorption à des températures autres que celles retenues pour notre plan d'expérience / This thesis was carried out within the framework of the CIFRE 1538/2010 convention at adixen Vacuum Products (aVP) in Annecy (France). It is has been partly funded by the ITN project SPAM (Surface Physics for Advanced Manufacturing). SPAM is an ITN project funded by the Pierre and Marie Curie program of the European Community bringing together academic institutions and industrial partners including aVP. The objective of this program was to contribute to the study and development of lithography and extreme ultraviolet lithography (EUVL). This work deals with the issues caused by the airborne molecular contamination (AMC) in the semiconductor industry and their control needs in EUVL and the current photolithography. In order to tackle the problem, sorption mathematical models have been investigated and validated using a quartz crystal microbalance (QCM). This technique, which confers a high sensitivity (ng level), allows the study of the sorption phenomena related to any deposable material onto a quartz crystal in contact with different gases whose concentrations are accurately controlled. Consequently, the protocol detailed in this thesis may be used for other types of experiments in any discipline requiring such precision. The conduct of our experimental plan includes two types of naturally different materials: a polymer (PCBA) on the one hand and two metallic substrates (stainless steel AISI 304 and CuC1) on the other hand, for which the matter transfer does not occur in the same manner. Studied gases were selected for their interest in the semiconductor industry (water vapor, HF). The resulting interaction between the studied gases and the targeted substrates is continuously followed by the QCM, which allows not only to validate the mathematical models already proposed by the literature but also to fit the experimentally obtained data. This enables us not only to predict the behavior of the AMC at equilibrium (isotherms) and the transient state but also to provide sorption estimations at temperatures other than those specified in our experimental plan

Identiferoai:union.ndltd.org:theses.fr/2014LYO10063
Date25 April 2014
CreatorsHerrán, Fernando
ContributorsLyon 1, Gaillard, François
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds