I developed a high power blue laser for use in scientific and technical applications (eg. precision spectroscopy, semiconductor inspection, flow cytometry, etc). It is linearly polarized, single longitudinal and single transverse mode, and a convenient fiber coupled continuous wave (cw) laser source. My technique employs external cavity frequency doubling and provides better power and beam quality than commercially available blue diode lasers. I use a fiber Bragg grating (FBG) stabilized infrared (IR) semiconductor laser source with a polarization maintaining (PM) fiber coupled output. Using a custom made optical and mechanical design this output is coupled with a mode matching efficiency of 96% into the doubling cavity. With this carefully designed and optimized cavity, measurements were carried out at various fundamental input powers. A net efficie ncy of 81 % with an output power of 680 mW at 486 nm was obtained using 840 mW of IR input. Also I report an 87.5 % net efficiency in coupling of blue light from servo locked cavity into a single mode PM fiber. Thus I have demonstrated a total fiber to fiber efficiency of 71% can be achieved in our approach using periodically poled potassium titanyl phosphate (PPKTP). To obtain these results, all losses in the system were carefully studied and minimized.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc103306 |
Date | 08 1900 |
Creators | Danekar, Koustubh |
Contributors | Shiner, David, Weathers, Duncan L., Neogi, Arup, Quintanilla, Sandra J. |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Danekar, Koustubh, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0021 seconds