The complexity for being at the forefront regarding information retrieval systems are constantly increasing. Recent technology of natural language processing called BERT has reached superhuman performance in high resource languages for reading comprehension tasks. However, several researchers has stated that multilingual model’s are not enough for low-resource languages, since they are lacking a thorough understanding of those languages. Recently, a Swedish pre-trained BERT model has been introduced which is trained on significantly more Swedish data than the multilingual models currently available. This study compares both multilingual and Swedish monolingual inherited BERT model’s for question answering utilizing both a English and a Swedish machine translated SQuADv2 data set during its fine-tuning process. The models are evaluated with SQuADv2 benchmark and within a implemented question answering system built upon the classical retriever-reader methodology. This study introduces a naive and more robust prediction method for the proposed question answering system as well finding a sweet spot for each individual model approach integrated into the system. The question answering system is evaluated and compared against another question answering library at the leading edge within the area, applying a custom crafted Swedish evaluation data set. The results show that the fine-tuned model based on the Swedish pre-trained model and the Swedish SQuADv2 data set were superior in all evaluation metrics except speed. The comparison between the different systems resulted in a higher evaluation score but a slower prediction time for this study’s system.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-42317 |
Date | January 2021 |
Creators | Jansson, Herman |
Publisher | Mittuniversitetet, Institutionen för informationssystem och –teknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds