Return to search

Las diacilglicerol quinasas en los núcleos de las células fotorreceptoras de la retina bovina : efectos de la luz y la insulina

El diacilglicerol (DAG) es un importante intermediario en la síntesis de muchas clases
de lípidos, y es, además, un segundo mensajero producido en respuesta a diversos
estímulos extracelulares, capaz de modular la actividad de numerosas enzimas. Una
de las vías de metabolización del DAG es la fosforilación llevada a cabo por las DAGK,
para dar ácido fosfatídico (PA). El ácido fosfatídico es también un importante segundo
mensajero lipídico involucrado en una gran variedad de respuestas celulares.
Dada la importancia fisiológica del DAG y del PA como segundos mensajeros lipídicos,
y, teniendo en cuenta los numerosos resultados que indican la presencia de las vías
de señalización responsables de la síntesis y degradación de estos segundos
mensajeros a nivel nuclear, iniciamos nuestros estudios analizando la actividad de las
DAGK en los núcleos de la retina bovina, proyectando la investigación hacia la
interpretación de su participación en las funciones esenciales de la retina, la recepción
y transmisión de la luz. Además, analizamos a nivel nuclear, en las células
fotorreceptoras de la retina, los efectos de la insulina, un reconocido protector del
sistema nervioso central (SNC) y modulador de la actividad DAGK en otros tipos
celulares del SNC.
Mediante un protocolo diseñado en nuestro laboratorio, obtuvimos a partir de la retina
entera una fracción nuclear enriquecida en los núcleos de las células fotorreceptoras
(FNF). En esta fracción nuclear, se pudo detectar actividad DAGK, transformadora del
DAG endógeno y exógeno. Se determinó linealidad en función del tiempo de ensayo,
el contenido proteico de la fracción nuclear y se analizaron parámetros cinéticos
aparentes (Km y Vmax para cada sustrato). Los resultados con detergentes y
sustratos diferentes permitieron sugerir la coexistencia de varios tipos de DAGK. Esto
fue confirmado por Western Blot (WB) y se detectaron, además, efectos significativos
en el contenido nuclear de estas isoformas por efecto de la luz (aumento de la DAGKδ
y disminución de las DAGKe, ß y B).
Nuestros hallazgos se reforzaron con ensayos enzimáticos en los que se utilizaron
condiciones selectivas (preferenciales) para medir la actividad de las isoformas δ y e.En ellos se observó, por efecto de la exposición de la retinas a la luz, una fuerte
correlación entre los cambios en el contenido y la actividad de ambas isoformas en la
FNF.
Se demostró asimismo que el aumento de la actividad DAGK nuclear en respuesta a la
luz es dependiente de la actividad PIP2-PLC, y se observó que dicho incremento en la
condición lumínica no es debido exclusivamente a un aumento del sustrato de la
reacción enzimática, DAG, sino que también participa en la activación el PIP2.
También demostramos la presencia de la PKCα en la FNF, PKC de tipo convencional
que es activada en presencia de Ca2+ y DAG. La exposición de las retinas a la luz
produjo un aumento del estado de fosforilación de la PKCα.
Dado que la fosforilación de PKC puede ser mediada por la activación de PDK1, que
es dependiente de la activación previa de PI3K, enzima participante de la vía de
señalización de insulina, el siguiente objetivo fue determinar la presencia de los
principales componentes de las vías de señalización de insulina en la FNF. Nuestros
resultados demostraron la presencia de Akt total y en su estado fosforilado (proteína
quinasa de la via de la PI3K), y de ERK1/2, pERK1/2 y p38 fosforilada (quinasas
correspondientes a la vía de las MAPK). Nuestros estudios demostraron, además, que
la exposición de las retinas bovinas a la luz produce un aumento en el estado de
fosforilación de Akt, y que induce la translocación de ERK1/2 activada a la FNF.
Por otro lado, al analizar los efectos directos e indirectos de la insulina sobre la
actividad DAGK nuclear en la FNF de retinas expuestas a la luz o a la oscuridad, fue
posible demostrar que la insulina es capaz de modular la actividad DAGK nuclear tanto
de forma directa (incubación de los núcleos aislados con insulina) como de manera
indirecta (incubación de las retinas bovinas con insulina y posterior análisis de la
actividad DAGK en la FNF). Además, se observó que la insulina cumple un rol en los
cambios de la actividad DAGK nuclear en respuesta a la luz, y que los efectos de la
insulina sobre la actividad DAGK son dependientes de su concentración (los efectos se incrementan con un aumento concomitante de la concentración de insulina
empleada en el ensayo enzimático).
Teniendo en cuenta los efectos directos de la insulina sobre la actividad DAGK
nuclear, analizamos la presencia del receptor de insulina en la FNF por WB e
inmunofluorescencia (IF) y demostramos la presencia del mismo en los núcleos de las
células fotorreceptoras. Un hallazgo de particular interés fue el de haber demostrado
que el contenido del RI aumenta en la FNF cuando las retinas bovinas son expuestas
a la luz, lo cual sugiere que la luz puede ser un estímulo capaz de promover la
translocación del RI al núcleo de las células fotorreceptoras.
Por último, analizamos si la insulina es capaz de participar en la translocación del
receptor de insulina al núcleo de las células fotorreceptoras y de mediar la activación
de las vías de señalización activadas por la misma a nivel nuclear. Nuestros resultados
indicaron que la insulina produce un aumento en el contenido del receptor de insulina
nuclear con respecto a la condición luz en ausencia de hormona. Además, la insulina
produjo un aumento de ERK1/2 activado en la FNF.
En conclusión, nuestros resultados demostraron por primera vez que la exposición de
las retinas bovinas a su estímulo natural, la luz, paralelamente a la activación de la
típica vía de la fototransducción que se inicia en los segmentos externos, induce a
nivel nuclear, la activación de distintas vías de señalización responsables de funciones
críticas para la célula, y que a nivel nuclear, pueden intervenir en la transcripción de
genes. Nuestros resultados demostraron también que la luz y la insulina son capaces
de intervenir en la translocación del receptor de insulina desde la membrana
plasmática hacia el núcleo de las células fotorreceptoras, y que la insulina promueve la
activación de vías de señalización tanto de forma indirecta, actuando sobre la retina
entera, como directa a nivel nuclear, sugiriendo para este último caso que mediaría
sus efectos a través de la población nuclear de dicho receptor. / Diacylglycerol (DAG) is an important intermediate in the synthesis of several types of
lipids, and it is also a second messenger produced in response to various extracellular
stimuli, with the ability to modulate the activity of numerous enzymes.
One route of metabolism of DAG is phosphorylation by DAGK to yield phosphatidic
acid (PA). PA is also an important lipid second messenger that has been involved in a
variety of cellular responses.
Given the physiological importance of DAG and PA as lipid second messengers and
taking into account the many results that indicate the presence of the signaling
pathways responsible for the synthesis and degradation of these second messengers
at the nuclear level, we initiated our studies assessing the activity of DAGK in the
nuclei of bovine retina, projecting them to the interpretation of their participation in the
essential functions of the retina, the receipt and transmission of light. We also analyzed
at the nuclear level in retina photoreceptor cells, the effects of insulin, a known
protector of the central nervous system (CNS) and DAGK activity modulator in other
cell types of the CNS.
Using a protocol designed in our laboratory, we obtained from the entire retina a
nuclear fraction enriched in photoreceptor cell nuclei (PNF). In the nuclear fraction,
DAGK activity could be detected, which is responsible for the transformation of
endogenous and exogenous DAG. A linear response was obtained as a function of
protein content of the nuclear fraction and as a function of time. The apparent kinetic
parameters (Vmax and Km for each substrate) were also determined. The results
derived from the different substrates and detergents used suggest the coexistence of
various types of DAGK. This was confirmed by Western Blot (WB), and significant
effects were detected in the nuclear content of these isoforms by the effect of light
(increased of DAGKδ and decreased of DAGK E, ß and B).
Our findings were strengthened by further enzyme assays using selective conditions to
measure the activity of E and δ isoforms in which, due to the exposure of retina to light, strong correlation was observed between changes in the content and the activity of
both isoforms in the PNF.
It was also demonstrated that the increase in nuclear DAGK activity in response to light
is dependent on PIP2-PLC activity and that this increase in light condition is not due
only to an increase of the substrate of the enzymatic reaction, DAG, but also to the fact
that PIP2 participates in DAGK activation.
We also showed the presence of PKCα in FNF, conventional PKC which is activated in
the presence of Ca2+ and DAG. Retina light exposure produced an increase in the
phosphorylation status of PKCα.
In addition, because phosphorylation of PKC could be mediated by the activation of
PDK1, which is dependent on the prior activation of PI3K, an enzyme participant of
insulin signaling pathway, our second main objective in the present study was to
determine the presence of the main components of the insulin signaling pathway in
PNF. Our results showed the presence of total Akt and its phosphorylated state
(protein kinase of PI3K pathway) and ERK1/2, pERK1/2 and phospho-p38
(components of the MAP kinases pathway). Our results also showed that light
exposure to bovine retinas causes an increase in the phosphorylation status of Akt and
induces the translocation of ERK1/2 activated to PNF.
In assessing the direct and indirect effects of insulin on nuclear DAGK activity in the
FNF from retinas exposed either to light or darkness, it was demonstrated that insulin
can modulate DAGK activity nuclear both directly (the incubation of isolated nuclei with
insulin), and indirectly (the incubation of bovine retinas with insulin and the subsequent
analysis of the DAGK activity in the FNF). We also observed that insulin has a role in
the changes of nuclear DAGK activity in response to light, and that these effects on
DAGK activity are dependent on its concentration (the effects are increased with a
concomitant increase in the insulin concentration used in the enzyme assay).
Taking into account the direct effects of insulin on nuclear DAGK activity, we analyzed
the presence of the insulin receptor in the FNF by WB and IF and we could interest was to have shown that the contents of RI increase in FNF when bovine retinas
are exposed to light, thus suggesting that light can be a stimulus capable of promoting
the translocation of RI to the nucleus of the photoreceptor cells.
Finally, we examined whether or not insulin is able to participate in insulin receptor
translocation to the nucleus of the photoreceptor cells and to mediate the activation of
signaling pathways related with insulin at the nuclear level. Our results indicated that
insulin causes an increase in the content of the nuclear insulin receptor with respect to
light condition in the absence of the hormone. Furthermore, incubation of PNF with
insulin resulted in an increase of nuclear, activated ERK1/2.
Summing up, our results demonstrate for the first time that light exposure of bovine
retinas, its natural stimulus, in parallel to the typical activation of phototransduction
pathways which starts in the outer segments, induces, at the nuclear level, the
activation of different signaling pathways known to be responsible for critical functions
to the cell, as gene transcription. Our results also reveal that light and insulin are
involved in the translocation of the insulin receptor from the plasma membrane to the
nucleus of the photoreceptor cells. Insulin also promotes the activation of cell signaling
pathways, thus indirectly acting on the retina, or directly in the nucleus, suggesting that
it mediates their effects through a nuclear population of the insulin receptor.

Identiferoai:union.ndltd.org:uns.edu.ar/oai:repositorio.bc.uns.edu.ar:123456789/2325
Date16 March 2015
CreatorsNatalini, Paola Marisel
ContributorsIlincheta, Mónica Graciela, Giusto, Norma María
PublisherUniversidad Nacional del Sur
Source SetsUniversidad Nacional del Sur
LanguageSpanish
Detected LanguageSpanish
TypeElectronic Thesis or Dissertation, Text
Rights2

Page generated in 0.0038 seconds